Modeling and Manipulating Cell Complexes in Two, Three and Higher Dimensions

Cell complexes have been used in geometric and solid modeling as a discretization of the boundary of 3D shapes. Also, operators for manipulating 3D shapes have been proposed. Here, we review first the work on data structures for encoding cell complexes in two, three and arbitrary dimensions, and we develop a taxonomy for such data structures. We review and analyze basic modeling operators for manipulating complexes representing both manifold and non-manifold shapes. These operators either preserve the topology of the cell complex, or they modify it in a controlled way. We conclude with a discussion of some open issues and directions for future research.

[1]  Leila De Floriani,et al.  Geometric modeling of solid objects by using a face adjacency graph representation , 1985, SIGGRAPH.

[2]  Luiz Velho,et al.  CHF: A Scalable Topological Data Structure for Tetrahedral Meshes , 2005, XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05).

[3]  David P. Dobkin,et al.  Primitives for the manipulation of three-dimensional subdivisions , 2005, Algorithmica.

[4]  Hans Hagen,et al.  Hierarchical and Geometrical Methods in Scientific Visualization , 2003 .

[5]  David Taniar,et al.  Computational Science and Its Applications - ICCSA 2005, International Conference, Singapore, May 9-12, 2005, Proceedings, Part I , 2005, ICCSA.

[6]  Peter R. Wilson Euler Formulas and Geometric Modeling , 1985, IEEE Computer Graphics and Applications.

[7]  Abel J. P. Gomes,et al.  AIF - A Data Structure for Polygonal Meshes , 2003, ICCSA.

[8]  Luiz Velho,et al.  Stellar Subdivision Grammars , 2003, Symposium on Geometry Processing.

[9]  W. B. R. Lickorish Simplicial moves on complexes and manifolds , 1999 .

[10]  H. Masuda Topological operators and Boolean operations for complex-based nonmanifold geometric models , 1993, Comput. Aided Des..

[11]  Max K. Agoston,et al.  Computer graphics and geometric modeling , 2013 .

[12]  Bruce G. Baumgart A polyhedron representation for computer vision , 1975, AFIPS '75.

[13]  Hélio Lopes,et al.  Handlebody Representation for Surfaces and Its Applications to Terrain Modeling , 2003, Int. J. Shape Model..

[14]  K. Brodlie Mathematical Methods in Computer Graphics and Design , 1980 .

[15]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[16]  Sang Hun Lee,et al.  Partial entity structure: a compact non-manifold boundary representation based on partial topological entities , 2001, SMA '01.

[17]  Leila De Floriani,et al.  Data structures for simplicial complexes: an analysis and a comparison , 2005, SGP '05.

[18]  Hélio Lopes,et al.  Structural operators for modeling 3-manifolds , 1997, SMA '97.

[19]  Kenneth I. Joy,et al.  Data Structures for Multiresolution Representation of Unstructured Meshes , 2003 .

[20]  Sara McMains,et al.  Out-of-core build of a topological data structure from polygon soup , 2001, SMA '01.

[21]  Hanan Samet,et al.  Foundations of Multidimensional and Metric Data Structures (The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling) , 2005 .

[22]  Martti Mäntylä,et al.  A note on the modeling space of Euler operators , 1984, Comput. Vis. Graph. Image Process..

[23]  PASCAL LIENHARDT,et al.  N-Dimensional Generalized Combinatorial Maps and Cellular Quasi-Manifolds , 1994, Int. J. Comput. Geom. Appl..

[24]  Vadim Shapiro,et al.  Construction and optimization of CSG representations , 1991, Comput. Aided Des..

[25]  Erik Brisson,et al.  Representing geometric structures in d dimensions: topology and order , 1989, SCG '89.

[26]  Bruce G. Baumgart Winged edge polyhedron representation. , 1972 .

[27]  Proceedings of the KirbyFest , 1999 .

[28]  Shin-Ting Wu A new combinatorial model for boundary representations , 1989, Comput. Graph..

[29]  Leila De Floriani,et al.  A data structure for non-manifold simplicial d-complexes , 2004, SGP '04.

[30]  Daniel Thalmann,et al.  Star-Vertices: A Compact Representation for Planar Meshes with Adjacency Information , 2001, J. Graphics, GPU, & Game Tools.

[31]  Charles M. Eastman,et al.  Geometric Modeling Using the Euler Operators , 1979 .

[32]  Abel J. P. Gomes,et al.  A mathematical model for boundary representations of n-dimensional geometric objects , 1999, SMA '99.

[33]  Abel J. P. Gomes,et al.  Oversimplified Euler Operators for a Non-oriented, Non-manifold B-Rep Data Structure , 2005, ISVC.

[34]  H. Whitney Local Properties of Analytic Varieties , 1992 .

[35]  Yasushi Yamaguchi,et al.  Nonmanifold topology based on coupling entities , 1995, IEEE Computer Graphics and Applications.

[36]  Abel J. P. Gomes Euler operators for stratified objects with incomplete boundaries , 2004, SM '04.

[37]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[38]  Hélio Lopes,et al.  A stratification approach for modeling two-dimensional cell complexes , 2004, Comput. Graph..

[39]  Gershon Elber,et al.  Proceedings of the Ninth ACM Symposium on Solid Modeling and Applications, Genova, Italy, June 09-11, 2004 , 2004, Symposium on Solid Modeling and Applications.

[40]  Leila De Floriani,et al.  A Dimension-Independent Data Structure for Simplicial Complexes , 2010, IMR.

[41]  Martti Mäntylä,et al.  Introduction to Solid Modeling , 1988 .

[42]  David E. Muller,et al.  Finding the Intersection of two Convex Polyhedra , 1978, Theor. Comput. Sci..