Quaternions, octonions, and now, 16-ons and 2 n -ons; New kinds of numbers

“Cayley-Dickson doubling,” starting from the real numbers, successively yields the complex numbers (dimension 2), quaternions (4), and octonions (8). Each contains all the previous ones as subalgebras. Famous Theorems, previously thought to be the last word, state that these are the full set of division (or normed) algebras with 1 over the real numbers. Their properties keep degrading: the complex numbers lose the ordering and self-conjugacy (x = x) properties of the reals; at the quaternions we lose commutativity; and at the octonions we lose associativity. If one keeps Cayley-Dickson doubling to get the 16-dimensional “sedenions,” zero-divisors appear. We introduce a different doubling process which also produces the complexes, quaternions, and octonions, but keeps going to yield 2-dimensional normed algebraic structures, for every n > 0. Each contains all the previous ones as subalgebras. We’ll see how these evade the Famous Impossibility Theorems. They also lead to a rational “vector product” operation in 2 − 1 dimensions for each k ≥ 2; this operation is impossible in other dimensions. But properties continue to degrade. The 16-ons lose distributivity, right-cancellation yx · x = y, flexibility a · ba = ab · a, and antiautomorphism ab = ba. The 32ons lose the properties that the solutions of generic division problems necessarily exist and are unique, and they lose the “Trotter product limit formula.” We introduce an important new notion to topology we call “generalized smoothness.” The 2-ons are generalized smooth for n ≤ 4. All the 2-ons have 1 and obey numerous identities including weakenings of the distributive, associative, and antiautomorphism laws. In the case of 16-ons these weakened distributivity laws characterize them, i.e. our 16-ons are, in a sense, unique and best-possible. Our 2-ons are also unique, albeit in a much weaker sense. The 2-ons with n ≤ 4 support a version of the fundamental theorem of algebra. Normed algebras (rational but not nec. distributive) over the reals are impossible in dimensions other than powers of 2.

[1]  J. Vrbik Simple Simulation of Solar System , 1999 .

[2]  J. Milnor,et al.  On the parallelizability of the spheres , 1958 .

[3]  Alexander I. Barvinok,et al.  Polynomial Time Algorithms to Approximate Permanents and Mixed Discriminants Within a Simply Exponential Factor , 1999, Random Struct. Algorithms.

[4]  Herleitung von Acht- und Sechzehn-Quadrate-Identitäten mit Hilfe von Eigenschaften der verallgemeinerten Quaternionen und der Cayley-Dicksonschen Zahlen , 1966 .

[5]  R. H. Bruck,et al.  The structure of alternative division rings , 1951 .

[6]  B. Eckmann Continuous Solutions of Linear Equations: Some Exceptional Dimensions in Topology , 1987 .

[7]  H. Weber Über die Komposition der quadratischen Formen , .

[8]  J. Osborn Review: K. A. Zhevlakov, A. M. Slin′ko, I. P. Shestakov and A. I. Shirshov, Rings that are nearly associative , 1983 .

[9]  H. Freudenthal Oktaven, Ausnahmegruppen und Oktavengeometrie , 1985 .

[10]  J. Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .

[11]  Alexander I. Barvinok,et al.  Computing Mixed Discriminants, Mixed Volumes, and Permanents , 1997, Discret. Comput. Geom..

[12]  A determinantal identity for quaternions and a new eight square identity , 1966 .

[13]  Charles M. Fiduccia On the algebraic complexity of matrix multiplication. , 1973 .

[14]  H. Freudenthal Zur Ebenen Oktavengeometrie , 1953 .

[15]  Jan van Leeuwen,et al.  The Complexity of Vector-Products , 1976, Inf. Process. Lett..

[16]  Hugh Williams,et al.  On quaternions and octonions: Their geometry, arithmetic, and symmetry, by John H. Conway and Derek A. Smith. Pp. 159. $29. 2003. ISBN 1 5688 134 9 (A. K. Peters). , 2004, The Mathematical Gazette.

[17]  Alfred Gray,et al.  Vector cross products , 1967 .

[18]  R. H. F. Denniston,et al.  Some packings with Steiner triple systems , 1974, Discret. Math..

[19]  J. Cronin Fixed points and topological degree in nonlinear analysis , 1995 .

[20]  Chia-Hsiung Tze,et al.  On the Role of Division, Jordan and Related Algebras in Particle Physics , 1996 .

[21]  M. Bremner,et al.  IDENTITIES FOR ALGEBRAS OBTAINED FROM THE CAYLEY-DICKSON PROCESS , 2001 .

[22]  R. H. Bruck,et al.  Loops Whose Inner Mappings are Automorphisms , 1956 .

[23]  R. Brown ON GENERALIZED CAYLEY-DICKSON ALGEBRAS , 1967 .

[24]  Lowell J. Paige,et al.  A class of simple Moufang loops , 1956 .

[25]  Helmer Aslaksen,et al.  Quaternionic determinants , 1996 .

[26]  J. Vrbik ITERATIVE SOLUTION TO PERTURBED KEPLER PROBLEM VIA KUSTAANHEIMO–STIEFEL EQUATION , 1998 .

[27]  K. Mccrimmon Generically algebraic algebras , 1967 .

[28]  A. Dold Lectures on Algebraic Topology , 1972 .

[29]  H. Hopf,et al.  Ein toplogischer Beitrag zur reellen Algebra , 1940 .

[30]  Ivan Niven The Roots of a Quaternion , 1942 .

[31]  Yongge Tian Matrix representations of octonions and their applications , 2000, math/0003166.

[32]  J. Vrbik Celestial mechanics via quaternions , 1994 .

[33]  F. Browder Mathematical developments arising from Hilbert problems , 1976 .

[34]  Jeremy Gray,et al.  Olinde Rodrigues' paper of 1840 on transformation groups , 1980 .

[35]  J. Dieudonné,et al.  Les déterminants sur un corps non commutatif , 1943 .

[36]  R. D. Schafer On the Algebras Formed by the Cayley-Dickson Process , 1954 .

[37]  J. Vrbik Perturbed Kepler problem in quaternionic form , 1995 .

[38]  M. Zorn The Automorphisms of Cayley's Non-Associative Algebra. , 1935, Proceedings of the National Academy of Sciences of the United States of America.

[39]  K. Imaeda A new formulation of classical electrodynamics , 1976 .

[40]  E. Study Zur Theorie der linearen Gleichungen , 1920 .

[41]  V. S. Drenski,et al.  A minimal basis of identities for a second-order matrix algebra over a field of characteristic o , 1981 .

[42]  BEYOND THE IMPOSSIBILITY OF A 16-SQUARE IDENTITY , 1995 .

[43]  H. O. Pflugfelder Quasigroups and loops : introduction , 1990 .

[44]  Constructions of sums of squares formulae with integer coefficients , 1992 .

[45]  Normed Right Alternative Algebras Over the Reals , 1972, Canadian Journal of Mathematics.

[46]  F. Bien Constructions of telephone networks by group representations , 1989 .

[47]  Hans F. de Groote,et al.  On the Complexity of Quaternion Multiplication , 1975, Inf. Process. Lett..

[48]  T. Howell,et al.  The Complexity of the Quaternion Product , 1975 .

[49]  B. Eckmann,et al.  TOPOLOGY, ALGEBRA, ANALYSIS: RELATIONS AND MISSING LINKS , 1999 .

[50]  R. H. Bruck A Survey of Binary Systems , 1971 .

[51]  Kevin McCrimmon Norms and noncommutative Jordan algebras , 1965 .

[52]  Russell Impagliazzo,et al.  Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.

[53]  M. Racine Minimal identities of octonion algebras , 1988 .

[54]  Kenneth Kunen,et al.  Single axioms for odd exponent groups , 2004, Journal of Automated Reasoning.

[55]  Max Zorn Alternativkörper und quadratische systeme , 1933 .

[56]  Fuzhen Zhang Quaternions and matrices of quaternions , 1997 .

[57]  Susumo Okubo,et al.  Non-associative algebras , 1995 .

[58]  K. Kunen The structure of conjugacy closed loops , 2000 .

[59]  E. L. Wilson A Class of Loops with the Isotopy-Isomorphy Property , 1966, Canadian Journal of Mathematics.

[60]  John F. Canny Improved Algorithms for Sign Determination and Existential Quantifier Elimination , 1993, Comput. J..

[61]  A. Pfister Quadratic forms with applications to algebraic geometry and topology , 1995 .

[62]  Markus Bläser On the Multiplicative Complexity of the Inversion and Division of Hamiltonian Quaternions , 2002, Found. Comput. Math..