Bragg gravity-gradiometer using the 1S0–3P1 intercombination transition of 88Sr

We present a gradiometer based on matter-wave interference of alkaline-earth-metal atoms, namely 88Sr. The coherent manipulation of the atomic external degrees of freedom is obtained by large-momentum-transfer Bragg diffraction, driven by laser fields detuned away from the narrow 1S0–3P1 intercombination transition. We use a well-controlled artificial gradient, realized by changing the relative frequencies of the Bragg pulses during the interferometer sequence, in order to characterize the sensitivity of the gradiometer. The sensitivity reaches 1.5 × 10−5 s−2 for an interferometer time of 20 ms, limited only by geometrical constraints. We observed extremely low sensitivity of the gradiometric phase to magnetic field gradients, approaching a value 104 times lower than the sensitivity of alkali-atom based gradiometers, limited by the interferometer sensitivity. An efficient double-launch technique employing accelerated red vertical lattices from a single magneto-optical trap cloud is also demonstrated. These results highlight strontium as an ideal candidate for precision measurements of gravity gradients, with potential application in future precision tests of fundamental physics.

[1]  P. C. Schmidt,et al.  H. A. Bethe and E. Salpeter: Quantum Mechanics of One‐ and Two‐Electron atoms. Plenum/Rosetta, New York 1977. 370 Seiten, Preis: $ 8.95. , 1978 .

[2]  R. McGowan,et al.  Atom interferometer based on Bragg scattering from standing light waves. , 1995, Physical review letters.

[3]  M. Kasevich,et al.  Method of phase extraction between coupled atom interferometers using ellipse-specific fitting. , 2002, Optics letters.

[4]  J. Ye,et al.  Measurement of optical Feshbach resonances in an ideal gas. , 2011, Physical review letters.

[5]  R. Grimm,et al.  Laser cooling to quantum degeneracy. , 2013, Physical review letters.

[6]  G. Tino,et al.  Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects. , 2014, Physical review letters.

[7]  Kurt Gibble,et al.  Quantum Scattering in a Juggling Atomic Fountain , 1998 .

[8]  F. Sorrentino,et al.  Precision measurement of the Newtonian gravitational constant using cold atoms , 2014, Nature.

[9]  A. Miklich,et al.  Bragg scattering of atoms from a standing light wave. , 1988, Physical review letters.

[10]  Andrew G. Glen,et al.  APPL , 2001 .

[11]  M. Kasevich,et al.  New method for gravitational wave detection with atomic sensors. , 2012, Physical review letters.

[12]  S. Chiow,et al.  Atom-wave diffraction between the Raman-Nath and the Bragg regime: Effective Rabi frequency, losses, and phase shifts , 2007, 0704.2627.

[13]  A. Peters,et al.  The effect of wavefront aberrations in atom interferometry , 2014, 1411.7914.

[14]  X. Chen,et al.  Test of Equivalence Principle at 10(-8) Level by a Dual-Species Double-Diffraction Raman Atom Interferometer. , 2015, Physical review letters.

[15]  F. Sorrentino,et al.  Measurement of the gravity-field curvature by atom interferometry. , 2015, Physical review letters.

[16]  Leonardo Salvi,et al.  Atom Interferometry with the Sr Optical Clock Transition. , 2017, Physical review letters.

[17]  A. Jamison,et al.  Advances in precision contrast interferometry with Yb Bose-Einstein condensates , 2014, 1404.6028.

[18]  M. Prevedelli,et al.  Atom interferometry gravity-gradiometer for the determination of the Newtonian gravitational constant G , 2006 .

[19]  M. Kasevich,et al.  Phase Shift in an Atom Interferometer due to Spacetime Curvature across its Wave Function. , 2017, Physical review letters.

[20]  A. Alberti,et al.  Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter. , 2010, Physical review letters.

[21]  A. Peters,et al.  Measurement of gravitational acceleration by dropping atoms , 1999, Nature.

[22]  R. Côté,et al.  Two-photon photoassociative spectroscopy of ultracold 88-Sr , 2008, 0808.3434.

[23]  G. Tino,et al.  Large-momentum-transfer Bragg interferometer with strontium atoms , 2015, 1510.07939.

[24]  G Ferrari,et al.  Laser sources for precision spectroscopy on atomic strontium. , 2006, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[25]  F. Sorrentino,et al.  Bragg interferometer for gravity gradient measurements , 2016 .

[26]  M. Kasevich,et al.  Testing Gravity with Cold-Atom Interferometers , 2014, 1412.3210.

[27]  Jun Luo,et al.  Test of the Universality of Free Fall with Atoms in Different Spin Orientations. , 2015, Physical review letters.

[28]  F. Sorrentino,et al.  Sensitivity limits of a Raman atom interferometer as a gravity gradiometer , 2013, 1312.3741.

[29]  Albert Roura,et al.  Circumventing Heisenberg's Uncertainty Principle in Atom Interferometry Tests of the Equivalence Principle. , 2015, Physical review letters.

[30]  F. Riehle,et al.  Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. , 1991, Physical review letters.

[31]  Savas Dimopoulos,et al.  Gravitational wave detection with atom interferometry , 2007, 0712.1250.

[32]  Wolfgang Ertmer,et al.  Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer , 2015, 1503.01213.

[33]  D. F. Kimball,et al.  Search for New Physics with Atoms and Molecules , 2017, 1710.01833.

[34]  Michael Hohensee,et al.  Sources and technology for an atomic gravitational wave interferometric sensor , 2010, 1001.4821.

[35]  Y. Castin,et al.  Bloch oscillations of atoms, adiabatic rapid passage, and monokinetic atomic beams , 1997 .

[36]  Zach DeVito,et al.  Opt , 2017 .

[37]  Steven Chu,et al.  Atom interferometry with up to 24-photon-momentum-transfer beam splitters. , 2007, Physical review letters.

[38]  A. Miffre,et al.  Atom interferometry , 2006, quant-ph/0605055.

[39]  Hong-Wei Song,et al.  Extracting the differential phase in dual atom interferometers by modulating magnetic fields , 2016, 1602.08569.

[40]  Zhongkun Hu,et al.  Operating an atom-interferometry-based gravity gradiometer by the dual-fringe-locking method , 2014 .

[41]  J. E. Debs,et al.  Precision atomic gravimeter based on Bragg diffraction , 2012, 1207.1595.

[42]  G. Rosi A proposed atom interferometry determination of G at 10−5 using a cold atomic fountain , 2017, 1702.01608.

[43]  F. Sorrentino,et al.  Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states , 2017, Nature Communications.

[44]  G. Tino,et al.  Trapped-atom interferometer with ultracold Sr atoms , 2016, 1609.06092.