Local and Global Context for Supervised and Unsupervised Metonymy Resolution

Computational approaches to metonymy resolution have focused almost exclusively on the local context, especially the constraints placed on a potentially metonymic word by its grammatical collocates. We expand such approaches by taking into account the larger context. Our algorithm is tested on the data from the metonymy resolution task (Task 8) at SemEval 2007. The results show that incorporation of the global context can improve over the use of the local context alone, depending on the types of metonymies addressed. As a second contribution, we move towards unsupervised resolution of metonymies, made feasible by considering ontological relations as possible readings. We show that such an unsupervised approach delivers promising results: it beats the supervised most frequent sense baseline and performs close to a supervised approach using only standard lexico-syntactic features.

[1]  Sven Hartrumpf,et al.  On metonymy recognition for geographic information retrieval , 2008, Int. J. Geogr. Inf. Sci..

[2]  Masaki Murata,et al.  A Statistical Approach to the Processing of Metonymy , 2000, COLING.

[3]  Jacquet Guillaume,et al.  XRCE-M: A Hybrid System for Named Entity Metonymy Resolution , 2007, ACL 2007.

[4]  James Pustejovsky,et al.  The Generative Lexicon , 1995, CL.

[5]  Mirella Lapata,et al.  Probabilistic Text Structuring: Experiments with Sentence Ordering , 2003, ACL.

[6]  Thierry Poibeau UP13: Knowledge-poor Methods (Sometimes) Perform Poorly , 2007, SemEval@ACL.

[7]  Dan Fass,et al.  met*: A Method for Discriminating Metonymy and Metaphor by Computer , 1991, CL.

[8]  Malvina Nissim,et al.  Learning to buy a Renault and talk to BMW: A supervised approach to conventional metonymy , 2005 .

[9]  Udo Hahn,et al.  Understanding metonymies in discourse , 2002, Artif. Intell..

[10]  Mihai Surdeanu,et al.  Ensemble Models for Dependency Parsing: Cheap and Good? , 2010, HLT-NAACL.

[11]  Hang Li,et al.  Generalizing Case Frames Using a Thesaurus and the MDL Principle , 1995, CL.

[12]  Ian Witten,et al.  Data Mining , 2000 .

[13]  Geoffrey Nunberg,et al.  Transfers of Meaning , 1995, J. Semant..

[14]  Malvina Nissim,et al.  Data and models for metonymy resolution , 2009, Lang. Resour. Evaluation.

[15]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[16]  Richárd Farkas,et al.  GYDER: Maxent Metonymy Resolution , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[17]  Jerry R. Hobbs,et al.  Interpretation as Abduction , 1993, Artif. Intell..

[18]  Michael Strube,et al.  WikiNet: A Very Large Scale Multi-Lingual Concept Network , 2010, LREC.

[19]  Sanda M. Harabagiu,et al.  UTD-HLT-CG: Semantic Architecture for Metonymy Resolution and Classification of Nominal Relations , 2007, SemEval@ACL.

[20]  Caroline Brun,et al.  XRCE-M: A Hybrid System for Named Entity Metonymy Resolution , 2009, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[21]  Sanda M. Harabagiu,et al.  Unsupervised Learning of Selectional Restrictions and Detection of Argument Coercions , 2011, EMNLP.

[22]  Ido Dagan,et al.  Building Textual Entailment Specialized Data Sets: a Methodology for Isolating Linguistic Phenomena Relevant to Inference , 2010, LREC.

[23]  Andrew Trotman,et al.  Overview of the NTCIR-9 Crosslink Task: Cross-lingual Link Discovery , 2011, NTCIR.

[24]  Ekaterina Shutova,et al.  Sense-based Interpretation of Logical Metonymy Using a Statistical Method , 2009, ACL.

[25]  Sanda M. Harabagiu Deriving Metonymic Coercions from WordNet , 1998, WordNet@ACL/COLING.

[26]  Michael Strube,et al.  Combining Collocations, Lexical and Encyclopedic Knowledge for Metonymy Resolution , 2009, EMNLP.