Numerical Simulations on Two Nonlinear Biharmonic Evolution Equations

We numerically simulate the following two nonlinear evolution equations with a fourth-order (biharmonic) leading term: and with an initial value and a Dirichlet boundary conditions. We use a bivariate spline space like finite element method to solve these equations. We discuss the convergence of our numerical scheme and present several numerical experiments under different boundary conditions and different domains in the bivariate setting.

[1]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[2]  Ming-Jun Lai,et al.  Bivariate spline method for numerical solution of steady state Navier–Stokes equations over polygons in stream function formulation , 2000 .

[3]  Robert V. Kohn,et al.  Local minimisers and singular perturbations , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[4]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[5]  Irmengard Rauch 1994 , 1994, Semiotica.

[6]  E. Weinan,et al.  Nonlinear Continuum Theory¶of Smectic-A Liquid Crystals , 1997 .

[7]  Qiang Du,et al.  Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity , 1992, SIAM Rev..

[8]  Ming-Jun Lai,et al.  On Two Nonlinear Biharmonic Evolution Equations: Existence, Uniqueness and Stability , 2004 .

[9]  P. Sternberg The effect of a singular perturbation on nonconvex variational problems , 1988 .

[10]  BY A. ERDÉLYI,et al.  Singular perturbations , 1986, IEEE Control Systems Magazine.

[11]  L. Bronsard,et al.  Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics , 1991 .

[12]  Larry L. Schumaker,et al.  On the Approximation Power of Splines on Triangulated Quadrangulations , 1998 .

[13]  J. Keller,et al.  Fast reaction, slow diffusion, and curve shortening , 1989 .

[14]  Radial configurations of smectic A materials and focal conics , 1998 .

[15]  M. Ortiz,et al.  The morphology and folding patterns of buckling-driven thin-film blisters , 1994 .

[16]  Sigurd B. Angenent,et al.  Multiphase thermomechanics with interfacial structure 2. Evolution of an isothermal interface , 1989 .