P.507 Machine learning classification of first-episode psychosis using cortical thickness: a large multicenter magnetic resonance imaging study
暂无分享,去创建一个
F. Piras | G. Spalletta | S. Smesny | D. Dwyer | J. Reichenbach | D. Tordesillas-Gutiérrez | M. Bellani | P. Brambilla | B. Crespo-Facorro | F. Španiel | A. Pigoni | A. Lasalvia | P. Dazzan | A. Schmidt | L. Antonucci | F. Harrisberger | S. Borgwardt | A. Gussew | L. Squarcina | S. Ciufolini | K. Langbein | R. Sanfelici | Y. Zaytseva | M. Ruggeri | O. Oeztuerk | N. Koutsouleris | A. Reuf | V. Ortiz
[1] R. Murray,et al. Using Machine Learning and Structural Neuroimaging to Detect First Episode Psychosis: Reconsidering the Evidence , 2019, Schizophrenia bulletin.
[2] Umberto Castellani,et al. Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques , 2017, NeuroImage.
[3] P. Falkai,et al. Prediction Models of Functional Outcomes for Individuals in the Clinical High-Risk State for Psychosis or With Recent-Onset Depression: A Multimodal, Multisite Machine Learning Analysis. , 2018, JAMA psychiatry.