Borderline gradient estimates at the boundary in Carnot groups

In this article, we prove the continuity of the horizontal gradient near a C1,Dini non-characteristic portion of the boundary for solutions to $\Gamma ^{0,{\rm Dini}}$ perturbations of horizontal Laplaceans as in (1.1) below, where the scalar term is in scaling critical Lorentz space L(Q, 1) with Q being the homogeneous dimension of the group. This result can be thought of both as a sharpening of the $\Gamma ^{1,\alpha }$ boundary regularity result in [4] as well as a subelliptic analogue of the main result in [1] restricted to linear equations.

[1]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[2]  F. U. –. E. Lanconelli On the Poisson kernel for the Kohn Laplacian , 1999 .

[3]  Borderline regularity for fully nonlinear equations in Dini domains , 2018, 1806.07652.

[4]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[5]  R. Carter Lie Groups , 1970, Nature.

[6]  T. Kuusi,et al.  Universal potential estimates , 2012 .

[7]  G. Citti,et al.  Schauder estimates at the boundary for sub-laplacians in Carnot groups , 2016, Calculus of Variations and Partial Differential Equations.

[8]  T. Kuusi,et al.  Nonlinear Potential Theory of elliptic systems , 2016 .

[9]  I. Munive,et al.  Compactness methods for $$\Gamma ^{1,\alpha }$$Γ1,α boundary Schauder estimates in Carnot groups , 2018, Calculus of Variations and Partial Differential Equations.

[10]  iuseppe,et al.  Linear potentials in nonlinear potential theory , 2012 .

[11]  Chao-Jiang Xu Regularity for Quasilinear Second-Order Subelliptic Equations , 1992 .

[12]  Luca Capogna,et al.  Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for carnot-carathéodory metrics , 1998 .

[13]  G. Citti $C^\infty $ regularity of solutions of a quasilinear equation related to the Levi operator , 1996 .

[14]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[15]  Schauder estimates for sub-elliptic equations , 2009 .

[16]  Donatella Danielli,et al.  Regularity at the Boundary for Solutions of Nonlinear Subelliptic Equations , 1995 .

[17]  T. Kuusi,et al.  Borderline Estimates for Fully Nonlinear Elliptic Equations , 2012, 1205.4799.

[18]  E. Stein,et al.  Balls and metrics defined by vector fields I: Basic properties , 1985 .

[19]  A. Bellaïche The tangent space in sub-riemannian geometry , 1994 .

[20]  G. Mingione,et al.  Gradient estimates via non-linear potentials , 2009, 0906.4939.

[21]  G. Folland,et al.  Subelliptic estimates and function spaces on nilpotent Lie groups , 1975 .

[22]  T. Kuusi,et al.  A nonlinear Stein theorem , 2014 .

[23]  Francesco Uguzzoni,et al.  Stratified Lie groups and potential theory for their sub-Laplacians , 2007 .

[24]  J. Manfredi,et al.  Rearrangements in Carnot Groups , 2018, Acta Mathematica Sinica, English Series.

[25]  Frédéric Jean,et al.  Sub-Riemannian Geometry , 2022 .

[26]  Claire David A few notes on Lorentz spaces , 2018, 1802.00244.

[27]  T. Kuusi,et al.  Linear Potentials in Nonlinear Potential Theory , 2013 .

[28]  Gradient continuity estimates for the normalized p-Poisson equation , 2019, 1904.13076.

[29]  L. Caffarelli Interior a priori estimates for solutions of fully non-linear equations , 1989 .

[30]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[31]  D. Jerison,et al.  The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, II , 1981 .

[32]  A. Petrosyan,et al.  The sub-elliptic obstacle problem: C1,a regularity of the free boundary in Carnot groups of step two , 2007 .

[33]  F. Greenleaf,et al.  Representations of nilpotent Lie groups and their applications , 1989 .

[34]  Jean-Jacques Risler,et al.  Sub-Riemannian Geometry , 2011 .

[35]  Nicola Garofalo Hypoelliptic operators and some aspects of analysis and geometry of sub-Riemannian spaces , 2016 .

[36]  E. Stein,et al.  SOME PROBLEMS IN HARMONIC ANALYSIS SUGGESTED BY SYMMETRIC SPACES AND SEMI-SIMPLE GROUPS , 2010 .

[37]  Chao-Jiang Xu,et al.  Higher interior regularity for quasilinear subelliptic systems , 1997 .

[38]  G. Lorentz Approximation of Functions , 1966 .

[39]  L. Simon Schauder estimates by scaling , 1997 .

[40]  A. Baernstein Symmetrization in Analysis , 2019 .

[41]  P. Alam ‘N’ , 2021, Composites Engineering: An A–Z Guide.

[42]  Giuseppe Mingione,et al.  Guide to nonlinear potential estimates , 2014, Bulletin of mathematical sciences.

[43]  E. Stein,et al.  Hypoelliptic differential operators and nilpotent groups , 1976 .