A model for two coupled turbulent fluids Part III: Numerical approximation by finite elements

Summary.This paper introduces a scheme for the numerical solution of a model for two turbulent flows with coupling at an interface. We consider a variational formulation of the coupled model, where the turbulent kinetic energy equation is formulated by transposition. We prove the convergence of the approximation to this formulation for 2D flows by piecewise affine triangular elements. Our main contribution is to prove that the standard Galerkin - finite element approximation of the Laplace equation approximates in L2 norm its solution by transposition, for data with low smoothness. We include some numerical tests for simple geometries that exhibit the behaviour predicted by our analysis.

[1]  Macarena Gómez Mármol,et al.  EXISTENCE OF SOLUTION TO NONLINEAR ELLIPTIC SYSTEMS ARISING IN TURBULENCE MODELLING , 2000 .

[2]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[3]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[4]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[5]  Christine Bernardi,et al.  A Model for Two Coupled Turbulent Fluids Part II: Numerical Analysis of a Spectral Discretization , 2002, SIAM J. Numer. Anal..

[6]  J. H. Bramble,et al.  A second order finite difference analog of the first biharmonic boundary value problem , 1966 .

[7]  Roger Lewandowski,et al.  The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity , 1997 .

[8]  José Barros-Neto,et al.  Problèmes aux limites non homogènes , 1966 .

[9]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[10]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[11]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[12]  Christine Bernardi,et al.  Existence d'une solution pour un modèle de deux fluides turbulents couplés , 1999 .

[13]  T. Gallouët,et al.  Non-linear elliptic and parabolic equations involving measure data , 1989 .

[14]  Christine Bernardi,et al.  A model for two coupled turbulent fluids: Part I : Analysis of the system , 2002 .

[15]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[16]  G. Stampacchia,et al.  Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..

[17]  O. Pironneau,et al.  Analysis of the K-epsilon turbulence model , 1994 .

[18]  Tomás Chacón Rebollo A term by term stabilization algorithm for finite element solution of incompressible flow problems , 1998 .