A new forensic tool to date human blood pools

[1]  David Brutin,et al.  Wetting and spreading of human blood: Recent advances and applications , 2018, Current Opinion in Colloid & Interface Science.

[2]  Steven P. Lund,et al.  Likelihood Ratio as Weight of Forensic Evidence: A Closer Look. , 2017, Journal of research of the National Institute of Standards and Technology.

[3]  N. Laan,et al.  Morphology of drying blood pools. , 2016, Forensic science international.

[4]  Talukder Z. Jubery,et al.  Blood rheology in shear and uniaxial elongation , 2016, Rheologica Acta.

[5]  Mark Jermy,et al.  Bloodstain Pattern Analysis: implementation of a fluid dynamic model for position determination of victims , 2015, Scientific reports.

[6]  D. Brutin,et al.  Desiccation of a sessile drop of blood: Cracks, folds formation and delamination , 2014 .

[7]  Nick Laan,et al.  Volume Determination of Fresh and Dried Bloodstains by Means of Optical Coherence Tomography , 2014, Journal of forensic sciences.

[8]  S. Fairgrieve,et al.  Exsanguinated Blood Volume Estimation Using Fractal Analysis of Digital Images * , 2012, Journal of forensic sciences.

[9]  D. Brutin,et al.  Structural and evaporative evolutions in desiccating sessile drops of blood. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  L. Pauchard,et al.  From craquelures to spiral crack patterns: influence of layer thickness on the crack patterns induced by desiccation , 2011 .

[11]  D. Brutin,et al.  Pattern formation in drying drops of blood , 2010, Journal of Fluid Mechanics.

[12]  Stuart H. James,et al.  Introduction to Bloodstain Pattern Analysis , 2005 .

[13]  Barbara M. Johnston,et al.  Non-Newtonian blood flow in human right coronary arteries: steady state simulations. , 2004, Journal of biomechanics.

[14]  L. Pauchard,et al.  Stable and unstable surface evolution during the drying of a polymer solution drop. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Y. Couder,et al.  Morphologies resulting from the directional propagation of fractures. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Ronald G. Larson,et al.  Measurement of wall-slip-layer rheology in shear-thickening wormy micelle solutions , 2002 .

[17]  van de Fn Frans Vosse,et al.  The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90° curved tube , 1999 .

[18]  L. Pauchard,et al.  Influence of salt content on crack patterns formed through colloidal suspension desiccation , 1999 .

[19]  M. Shanahan,et al.  Influence of Evaporation on Contact Angle , 1995 .

[20]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[21]  A. Winter,et al.  A study of the evaporation rates of small water drops placed on a solid surface , 1989 .

[22]  R. Dwivedi Drying behaviour of alumina gels , 1986 .

[23]  R. G. Picknett,et al.  The evaporation of sessile or pendant drops in still air , 1977 .

[24]  D. Banabic,et al.  Recent advances and applications , 2004 .

[25]  D. Ku,et al.  Fluid mechanics of vascular systems, diseases, and thrombosis. , 1999, Annual review of biomedical engineering.

[26]  F. Brochard-Wyart,et al.  Droplets: Capillarity and Wetting , 1999 .

[27]  Larry Rudolph Genskow Drying of Solids , 1995 .

[28]  T. Mulvey A closer look , 2007, Nature.

[29]  J. M. Haynes Capillarity and Wetting , 1986 .

[30]  T. Sherwood The Drying of solids—II , 1929 .