Composite Model Reference Adaptive Control with Parameter Convergence Under Finite Excitation

A new parameter estimation method is proposed in the framework of composite model reference adaptive control for improved parameter convergence without persistent excitation. The regressor filtering scheme is adopted to perform the parameter estimation with signals that can be obtained easily. A new framework for residual signal construction is proposed. The incoming data are first accumulated to build the information matrix, and then its quality is evaluated with respect to a chosen measure to select and store the best one. The information matrix is built to have full rank after sufficient but not persistent excitation. In this way, the exponential convergence of both tracking error and parameter estimation error can be guaranteed without persistent oscillation in the external command, which drives the system. Numerical simulations are performed to verify the theoretical findings and to demonstrate the advantages of the proposed adaptation law over the standard direct adaptation law.

[1]  Anuradha M. Annaswamy,et al.  Parameter convergence in nonlinearly parameterized systems , 2003, IEEE Trans. Autom. Control..

[2]  Haoyong Yu,et al.  Online data‐driven composite adaptive backstepping control with exact differentiators , 2016 .

[3]  Weiping Li Adaptive control of robot motion , 1990 .

[4]  Marcus Johnson,et al.  Composite adaptive control for Euler-Lagrange systems with additive disturbances , 2010, Autom..

[5]  Petros A. Ioannou,et al.  Robust Adaptive Control , 2012 .

[6]  Weiping Li,et al.  Composite adaptive control of robot manipulators , 1989, Autom..

[7]  J. Slotine,et al.  On the Adaptive Control of Robot Manipulators , 1987 .

[8]  C. Richard Johnson,et al.  Exponential convergence of adaptive identification and control algorithms , 1981, Autom..

[9]  Anthony J. Calise,et al.  Adaptive Loop Transfer Recovery , 2012 .

[10]  Eric N. Johnson,et al.  Theory and Flight-Test Validation of a Concurrent-Learning Adaptive Controller , 2011 .

[11]  Sastry,et al.  Necessary and sufficient conditions for parameter convergence in adaptive control , 1984 .

[12]  Brian D. O. Anderson,et al.  Adaptive systems, lack of persistency of excitation and bursting phenomena , 1985, Autom..

[13]  Petar V. Kokotovic,et al.  Instability analysis and improvement of robustness of adaptive control , 1984, Autom..

[14]  Eugene Lavretsky,et al.  Combined/Composite Model Reference Adaptive Control , 2009, IEEE Transactions on Automatic Control.

[15]  A. H. Nayfeh,et al.  Development of an analytical model of wing rock for slender delta wings , 1989 .

[16]  K. Narendra,et al.  A New Adaptive Law for Robust Adaptation without Persistent Excitation , 1986, 1986 American Control Conference.

[17]  K. Narendra,et al.  Persistent excitation in adaptive systems , 1987 .

[18]  Anthony J. Calise,et al.  Derivative-Free Model Reference Adaptive Control , 2010 .

[19]  Gang Tao,et al.  Adaptive Control Design and Analysis , 2003 .

[20]  M. K. Ciliz Adaptive Backstepping Control Using Combined Direct and Indirect Adaptation , 2007 .

[21]  Girish Chowdhary,et al.  Concurrent learning adaptive control of linear systems with exponentially convergent bounds , 2013 .

[22]  Anthony J. Calise,et al.  A new neuroadaptive control architecture for nonlinear uncertain dynamical systems: Beyond σ- and e-modifications , 2008, 2008 47th IEEE Conference on Decision and Control.

[23]  Kumpati S. Narendra,et al.  A new approach to model reference adaptive control , 1989 .

[24]  Jun Nakanishi,et al.  Composite adaptive control with locally weighted statistical learning , 2005, Neural Networks.

[25]  Naira Hovakimyan,et al.  Design and Analysis of a Novel ${\cal L}_1$ Adaptive Control Architecture With Guaranteed Transient Performance , 2008, IEEE Transactions on Automatic Control.

[26]  Kumpati S. Narendra,et al.  Application of robust adaptive control using combined direct and indirect methods , 1989 .

[27]  Anthony J. Calise,et al.  A New Neuroadaptive Control Architecture for Nonlinear Uncertain Dynamical Systems: Beyond $\sigma $- and $e$-Modifications , 2009, IEEE Transactions on Neural Networks.

[28]  Iven Mareels,et al.  Sufficiency of excitation , 1984 .

[29]  Haoyong Yu,et al.  Composite Learning From Adaptive Dynamic Surface Control , 2016, IEEE Transactions on Automatic Control.

[30]  Warren E. Dixon,et al.  Composite adaptation for neural network-based controllers , 2010, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[31]  Stephen P. Boyd,et al.  On parameter convergence in adaptive control , 1983 .

[32]  Girish Chowdhary,et al.  Exponential parameter and tracking error convergence guarantees for adaptive controllers without persistency of excitation , 2014, Int. J. Control.

[33]  A. Calise,et al.  Kalman Filter Modification in Adaptive Control , 2010 .

[34]  M. Kemal Ciliz,et al.  Combined direct and indirect adaptive control for a class of nonlinear systems , 2009 .

[35]  Tansel Yucelen,et al.  Low-frequency learning and fast adaptation in model reference adaptive control for safety-critical systems , 2013, 2013 American Control Conference.

[36]  K. Narendra,et al.  Combined direct and indirect approach to adaptive control , 1989 .