Inverse Problems, Ill‐posed Problems

[1]  M. Foster An Application of the Wiener-Kolmogorov Smoothing Theory to Matrix Inversion , 1961 .

[2]  David L. Phillips,et al.  A Technique for the Numerical Solution of Certain Integral Equations of the First Kind , 1962, JACM.

[3]  S. Twomey,et al.  On the Numerical Solution of Fredholm Integral Equations of the First Kind by the Inversion of the Linear System Produced by Quadrature , 1963, JACM.

[4]  Joel Franklin,et al.  Well-posed stochastic extensions of ill-posed linear problems☆ , 1970 .

[5]  P. Sabatier Applied Inverse Problems , 1978 .

[6]  Mark A. Lukas,et al.  The application and numerical solution of integral equations , 1980 .

[7]  A. Laub,et al.  The singular value decomposition: Its computation and some applications , 1980 .

[8]  M. Nashed Operator-theoretic and computational approaches to Ill-posed problems with applications to antenna theory , 1981 .

[9]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[11]  M. Bertero,et al.  Ill-posed problems in early vision , 1988, Proc. IEEE.

[12]  M. Bertero,et al.  Linear inverse problems with discrete data: II. Stability and regularisation , 1988 .

[13]  Fionn Murtagh,et al.  Deconvolution in Astronomy: A Review , 2002 .

[14]  Stéphane Mallat,et al.  Deconvolution by thresholding in mirror wavelet bases , 2003, IEEE Trans. Image Process..