Thermogravimetric kinetics of catalytic and non-catalytic pyrolytic conversion of palm kernel shell with acid treated coal bottom ash

[1]  Guozhao Ji,et al.  Kinetics of catalytic biomass pyrolysis using Ni-based functional materials , 2019 .

[2]  Guozhao Ji,et al.  Kinetic study of the effect of in-situ mineral solids on pyrolysis process of oil sludge , 2019, Chemical Engineering Journal.

[3]  Juan F. Pérez,et al.  Pyrolysis Kinetics Using TGA and Simulation of Gasification of the Microalga Botryococcus braunii , 2019, BioEnergy Research.

[4]  Chunxiang Chen,et al.  Microwave Drying Effect on Pyrolysis Characteristics and Kinetics of Microalgae , 2019, BioEnergy Research.

[5]  J. C. G. da Silva,et al.  Determination of the Bioenergy Potential of Brazilian Pine-Fruit Shell via Pyrolysis Kinetics, Thermodynamic Study, and Evolved Gas Analysis , 2019, BioEnergy Research.

[6]  A. Raheem,et al.  Iso-conversional kinetics of low-lipid micro-algae gasification by air , 2019, Journal of Cleaner Production.

[7]  Y. Taufiq-Yap,et al.  Modified sulfonation method for converting carbonized glucose into solid acid catalyst for the esterification of palm fatty acid distillate , 2018, Fuel.

[8]  S. Fan,et al.  Thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model. , 2018, Bioresource technology.

[9]  S. Yusup,et al.  The effect of industrial waste coal bottom ash as catalyst in catalytic pyrolysis of rice husk for syngas production , 2018, Energy Conversion and Management.

[10]  Kaustubha Mohanty,et al.  Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. , 2018, Bioresource technology.

[11]  J. Bai,et al.  The mineral evolution during coal washing and its effect on ash fusion characteristics of Shanxi high ash coals , 2018 .

[12]  F. Agblevor,et al.  Pyrolytic Conversion of Olive Mill Wastewater Sludge to Biofuels Using Red Mud as Catalyst , 2017 .

[13]  H. Hasbullah,et al.  Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil , 2017 .

[14]  Jyoti Gupta,et al.  Exploring the potential of red mud and beechwood co-processing for the upgrading of fast pyrolysis vapours , 2017 .

[15]  S. Yusup,et al.  Performance of water-leached coal bottom ash as catalyst in thermogravimetric analyser (tga) biomass gasification , 2017 .

[16]  Zhong-yang Luo,et al.  Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review , 2017 .

[17]  A. Nzihou,et al.  Kinetic Analysis of Tropical Lignocellulosic Agrowaste Pyrolysis , 2017, BioEnergy Research.

[18]  Mário Costa,et al.  Unresolved Issues on the Kinetic Modeling of Pyrolysis of Woody and Nonwoody Biomass Fuels , 2017 .

[19]  Lian Zhang,et al.  Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior , 2016 .

[20]  Marie S. Swita,et al.  Red Mud Catalytic Pyrolysis of Pinyon Juniper and Single-Stage Hydrotreatment of Oils , 2016 .

[21]  B. Xiao,et al.  Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser–Suzuki deconvolution, and iso-conversional method , 2016 .

[22]  S. Adhikari,et al.  Effect of Alkali and Alkaline Earth Metals on in-Situ Catalytic Fast Pyrolysis of Lignocellulosic Biomass: A Microreactor Study , 2016 .

[23]  C. A. Moraes,et al.  Characterization of rice husk ash produced using different biomass combustion techniques for energy , 2016 .

[24]  M. Zamorano,et al.  Determination and comparison of combustion kinetics parameters of agricultural biomass from olive trees , 2015 .

[25]  J. Bi,et al.  Addition of ash to prevent agglomeration during catalytic coal gasification in a pressurized fluidized bed , 2015 .

[26]  M. Scarsella,et al.  Double Distribution Activation Energy Model as Suitable Tool in Explaining Biomass and Coal Pyrolysis Behavior , 2015 .

[27]  Seungdo Kim,et al.  Non-Isothermal Pyrolysis of Citrus Unshiu Peel , 2015, BioEnergy Research.

[28]  Junmeng Cai,et al.  An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass , 2014 .

[29]  David Baxter,et al.  An overview of the behaviour of biomass during combustion: Part II. Ash fusion and ash formation mechanisms of biomass types , 2014 .

[30]  Baoliang Chen,et al.  Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. , 2013, Bioresource technology.

[31]  S. P. Tewari,et al.  Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs Flynn-Wall-Ozawa method. , 2013, The journal of physical chemistry. A.

[32]  Pietro Bartocci,et al.  Thermogravimetric analysis and kinetic study of poplar wood pyrolysis , 2012 .

[33]  Alan K. Burnham,et al.  ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data , 2011 .

[34]  S. Yusup,et al.  Effect of Steam and Catalyst on Palm Oil Wastes Thermal Decomposition for Hydrogen Production , 2011 .

[35]  Su-Hwa Jung,et al.  Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds. , 2010, Bioresource technology.

[36]  Mohd Jindra Aris,et al.  Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). , 2010, Bioresource technology.

[37]  Ronghou Liu,et al.  Improved version of Doyle integral method for nonisothermal kinetics of solid-state reactions , 2008 .

[38]  R. Escalada Cuadrado,et al.  Combustion in bubbling fluidised bed with bed material of limestone to reduce the biomass ash agglomeration and sintering , 2006 .

[39]  B. Jenkins,et al.  Feasibility of collecting naturally leached rice straw for thermal conversion. , 2003 .

[40]  Peter McKendry,et al.  Energy production from biomass (Part 3): Gasification technologies. , 2002, Bioresource technology.

[41]  Sergey Vyazovkin,et al.  Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids , 1998 .

[42]  Haibo Li,et al.  Kinetics evaluation and thermal decomposition characteristics of co-pyrolysis of municipal sewage sludge and hazelnut shell. , 2018, Bioresource technology.

[43]  U. Rashid,et al.  Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential. , 2017, Bioresource technology.

[44]  Wei Hsin Chen,et al.  Distributed Activation Energy Modelling for Thermal Decomposition of Microalgae Residues , 2016 .

[45]  F. Sulaiman,et al.  Influence of Washing Medium Pre-treatment on Pyrolysis Yields and Product Characteristics of Palm Kernel Shell , 2016 .

[46]  Dengyu Chen,et al.  Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods , 2015 .

[47]  R. Sparling,et al.  Biomass pretreatment for consolidated bioprocessing (CBP) , 2014 .

[48]  M. Castaldi,et al.  Beneficial Use of Ash and Char From Biomass Gasification , 2011 .

[49]  Mi-Sun Kim,et al.  Fermentative hydrogen production from tofu-processing waste and anaerobic digester sludge using microbial consortium. , 2010, Bioresource technology.

[50]  Sumiani Binti Yusoff,et al.  Renewable energy from palm oil - innovation on effective utilization of waste. , 2006 .

[51]  J. Ayala,et al.  Variation in fly ash properties with milling and acid leaching , 2005 .