THE AXIOM OF CHOICE
暂无分享,去创建一个
[1] G. Hamel. Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung:f(x+y)=f(x)+f(y) , 1905 .
[2] B. Russell. On Some Difficulties in the Theory of Transfinite Numbers and Order Types , 1907 .
[3] F. Hausdorff,et al. Bemerkung über den Inhalt von Punktmengen , 1914 .
[4] B. Russell,et al. Introduction to Mathematical Philosophy , 1920, The Mathematical Gazette.
[5] Alfred Tajtebaum-Tarski. Sur quelques théorèmes qui équivalent à l'axiome du choix , 1924 .
[6] S. Banach,et al. Sur la décomposition des ensembles de points en parties respectivement congruentes , 1924 .
[7] D. Hilbert. Über das Unendliche , 1926 .
[8] M. Zorn. A remark on method in transfinite algebra , 1935 .
[9] M. Stone. The theory of representations for Boolean algebras , 1936 .
[10] K. Gödel. Consistency-Proof for the Generalized Continuum-Hypothesis. , 1939, Proceedings of the National Academy of Sciences of the United States of America.
[11] M. Stone,et al. A General Theory of Spectra. I: I. , 1940, Proceedings of the National Academy of Sciences of the United States of America.
[12] Axiom of choice for finite sets. , 1945 .
[13] Paul Bernays,et al. A system of axiomatic set theory—Part I , 1937, Journal of Symbolic Logic.
[14] J. Cooper,et al. Elements de Mathematique. XV, Premiere Partie, Les Structures Fondamentales de L'Analyse , 1948, The Mathematical Gazette.
[15] J. L. Kelley,et al. The Tychonoff product theorem implies the axiom of choice , 1950 .
[16] Gregorio Klimovsky. El teorema de Zorn y la existencia de filtros e ideales maximales en los reticulados distributivos , 1958 .
[17] R. L. Blair,et al. The axiom of choice for finite sets , 1960 .
[18] P. J. Cohen,et al. THE INDEPENDENCE OF THE CONTINUUM HYPOTHESIS, II. , 1964, Proceedings of the National Academy of Sciences of the United States of America.
[19] William A. Howard,et al. The formulae-as-types notion of construction , 1969 .
[20] R. Solovay. A model of set-theory in which every set of reals is Lebesgue measurable* , 1970 .
[21] Jean Giraud,et al. Cohomologie non abélienne , 1971 .
[22] A. Leisenring. Mathematical logic and Hilbert's ε-symbol , 1971 .
[23] J. Bell,et al. The Maximal Ideal Theorem for Lattices of Sets , 1972 .
[24] J. Truss. Finite axioms of choice , 1973 .
[25] Paul E. Howard,et al. Limitations on the Fraenkel-Mostowski method of independence proofs , 1973, Journal of Symbolic Logic.
[26] R. Diaconescu. Axiom of choice and complementation , 1975 .
[27] J. Paris,et al. The Type Theoretic Interpretation of Constructive Set Theory , 1978 .
[28] P. T. Johnstone,et al. Tychonoff's theorem without the axiom of choice , 1981 .
[29] Gregory H. Moore. Zermelo’s Axiom of Choice , 1982 .
[30] P. Johnstone,et al. The point of pointless topology , 1983 .
[31] John L. Bell. On the Strength of the Sikorski Extension Theorem for Boolean Algebras , 1983, J. Symb. Log..
[32] Peter Aczel,et al. The Type Theoretic Interpretation of Constructive Set Theory: Inductive Definitions , 1986 .
[33] A A Kirillov,et al. On normed rings , 1987 .
[34] John L. Bell,et al. Toposes and local set theories - an introduction , 1988 .
[35] F. Borceux,et al. Boolean-algebras in a Localic Topos , 1990 .
[36] V. M. Tikhomirov. On Rings of Continuous Functions on Topological Spaces , 1991 .
[37] W. Just,et al. Versions of the Axiom of Choice , 1995 .
[38] John L. Bell,et al. Boolean Algebras and Distributive Lattices Treated Constructively , 1999, Math. Log. Q..
[39] Peter Aczel,et al. Collection Principles in Dependent Type Theory , 2000, TYPES.
[40] Andrew M. Pitts,et al. Categorical logic , 2001, LICS 2001.
[41] Silvio Valentini,et al. Extensionality Versus Constructivity , 2002, Math. Log. Q..
[42] Maria Emilia Maietti,et al. Modular correspondence between dependent type theories and categories including pretopoi and topoi , 2005, Mathematical Structures in Computer Science.