Predictive Run-Time Verification of Discrete-Time Reachability Properties in Black-Box Systems Using Trace-Level Abstraction and Statistical Learning

Run-time Verification (RV) has become a crucial aspect of monitoring black-box systems. Recently, we introduced \(\mathcal {P}{} \textit{revent} \), a predictive RV framework, in which the monitor is able to predict the future extensions of an execution, using a model inferred from the random sample executions of the system. The monitor maintains a table of the states of the prediction model, with the probability of the extensions from each state that satisfy a safety property.

[1]  Marta Z. Kwiatkowska,et al.  Stochastic Model Checking , 2007, SFM.

[2]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[3]  Martin Leucker,et al.  Comparing LTL Semantics for Runtime Verification , 2010, J. Log. Comput..

[4]  Jian Pei,et al.  Sequence Data Mining , 2007, Advances in Database Systems.

[5]  Lijun Zhang,et al.  Logic and Model Checking for Hidden Markov Models , 2005, FORTE.

[6]  Mihalis Yannakakis,et al.  Black Box Checking , 1999, FORTE.

[7]  Ezio Bartocci,et al.  Runtime Verification with State Estimation , 2011, RV.

[8]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .

[9]  Martin Leucker,et al.  Sliding between Model Checking and Runtime Verification , 2012, RV.

[10]  Oded Maler,et al.  Some Thoughts on Runtime Verification , 2016, RV.

[11]  Martin Leucker,et al.  A brief account of runtime verification , 2009, J. Log. Algebraic Methods Program..

[12]  S. Stoller,et al.  Runtime Verification with Particle Filtering , 2013, RV.

[13]  Axel Legay,et al.  Faster Statistical Model Checking by Means of Abstraction and Learning , 2014, RV.

[14]  Xian Zhang,et al.  Runtime Verification with Predictive Semantics , 2012, NASA Formal Methods.

[15]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[16]  Kim G. Larsen,et al.  Learning Probabilistic Automata for Model Checking , 2011, 2011 Eighth International Conference on Quantitative Evaluation of SysTems.

[17]  Kushal Mukherjee,et al.  State splitting and merging in probabilistic finite state automata for signal representation and analysis , 2014, Signal Process..

[18]  Yliès Falcone,et al.  Runtime Verification of Safety-Progress Properties , 2009, RV.

[19]  José Oncina,et al.  Learning Stochastic Regular Grammars by Means of a State Merging Method , 1994, ICGI.

[20]  Axel Legay,et al.  Rare Events for Statistical Model Checking an Overview , 2016, RP.

[21]  Chien-Yu Chen,et al.  Prediction of outer membrane proteins by support vector machines using combinations of gapped amino acid pair compositions , 2005, Fifth IEEE Symposium on Bioinformatics and Bioengineering (BIBE'05).

[22]  Colin de la Higuera,et al.  PAutomaC: a probabilistic automata and hidden Markov models learning competition , 2013, Machine Learning.

[23]  Martin Leucker,et al.  The Good, the Bad, and the Ugly, But How Ugly Is Ugly? , 2007, RV.

[24]  Bernhard K. Aichernig,et al.  Probabilistic Black-Box Reachability Checking , 2017, RV.

[25]  Arie Gurfinkel,et al.  Prevent : A Predictive Run-Time Verification Framework Using Statistical Learning , 2018, SEFM.

[26]  James D. Hamilton Time Series Analysis , 1994 .

[27]  Christel Baier,et al.  Principles of model checking , 2008 .

[28]  Nils Lid Hjort,et al.  Model Selection and Model Averaging: Contents , 2008 .

[29]  Amir Pnueli,et al.  The temporal logic of programs , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[30]  Bengt Jonsson,et al.  A logic for reasoning about time and reliability , 1990, Formal Aspects of Computing.

[31]  Axel Legay,et al.  Statistical Model Checking: An Overview , 2010, RV.

[32]  Samuel W. K. Chan,et al.  A text-based decision support system for financial sequence prediction , 2011, Decis. Support Syst..

[33]  Carl E. Rasmussen,et al.  Factorial Hidden Markov Models , 1997 .

[34]  Ted Herman,et al.  Probabilistic Self-Stabilization , 1990, Information Processing Letters.

[35]  Ricard Gavaldà,et al.  Learning Probability Distributions Generated by Finite-State Machines , 2016 .

[36]  N. Hjort,et al.  Comprar Model Selection and Model Averaging | Gerda Claeskens | 9780521852258 | Cambridge University Press , 2008 .

[37]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[38]  Zoubin Ghahramani,et al.  A Unifying Review of Linear Gaussian Models , 1999, Neural Computation.

[39]  Lijun Zhang,et al.  Probabilistic CEGAR , 2008, CAV.

[40]  A. Prasad Sistla,et al.  Monitorability of Stochastic Dynamical Systems , 2011, CAV.

[41]  Sebastiaan A. Terwijn,et al.  On the Learnability of Hidden Markov Models , 2002, ICGI.

[42]  Marta Z. Kwiatkowska,et al.  Symmetry Reduction for Probabilistic Model Checking , 2006, CAV.

[43]  Andrew Chi-Chih Yao,et al.  The complexity of nonuniform random number generation , 1976 .