Emergent complex neural dynamics

Is the brain on the edge of criticality? Understanding the inner workings of the brain is a task made difficult by the number of elements involved: a hundred billion neurons and a hundred trillion synapses. Viewing the brain in terms of collective dynamics is one approach now yielding some insight.

[1]  P. Anderson More is different. , 1972, Science.

[2]  I. Prigogine,et al.  Formative Processes. (Book Reviews: Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations) , 1977 .

[3]  Alan S. Perelson,et al.  Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order Through Fluctuations.G. Nicolis , I. Prigogine , 1978 .

[4]  K. Mellanby How Nature works , 1978, Nature.

[5]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Kelso Phase transitions and critical behavior in human bimanual coordination. , 1984, The American journal of physiology.

[7]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[8]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[9]  A. Fuchs,et al.  A phase transition in human brain and behavior , 1992 .

[10]  R. Eckhorn,et al.  Oscillatory and non-oscillatory synchronizations in the visual cortex and their possible roles in associations of visual features. , 1994, Progress in brain research.

[11]  Stanley,et al.  Self-organized branching processes: Mean-field theory for avalanches. , 1995, Physical review letters.

[12]  P. Bak,et al.  Complexity, contingency, and criticality. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[13]  D. Chialvo,et al.  Pattern Formation and Functionality in Swarm Models , 1995, adap-org/9507003.

[14]  Daniel Lehmann,et al.  Regulated Criticality in the Brain? , 1998, Adv. Complex Syst..

[15]  Henrik Jeldtoft Jensen,et al.  Self-Organized Criticality , 1998 .

[16]  D. Turcotte,et al.  Forest fires: An example of self-organized critical behavior , 1998, Science.

[17]  D. Turcotte,et al.  Self-organized criticality , 1999 .

[18]  M. Marchesi,et al.  Scaling and criticality in a stochastic multi-agent model of a financial market , 1999, Nature.

[19]  P. Bak,et al.  Learning from mistakes , 1997, Neuroscience.

[20]  L. Parsons,et al.  Interregional connectivity to primary motor cortex revealed using MRI resting state images , 1999, Human brain mapping.

[21]  V. Haughton,et al.  Mapping functionally related regions of brain with functional connectivity MR imaging. , 2000, AJNR. American journal of neuroradiology.

[22]  H. Takayasu,et al.  Dynamic phase transition observed in the Internet traffic flow , 2000 .

[23]  D. Gilden Cognitive emissions of 1/f noise. , 2001, Psychological review.

[24]  P. Bak,et al.  Adaptive learning by extremal dynamics and negative feedback. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Gordon D. A. Brown,et al.  Scale invariance in the retrieval of retrospective and prospective memories , 2001, Psychonomic bulletin & review.

[26]  K. Linkenkaer-Hansen,et al.  Long-Range Temporal Correlations and Scaling Behavior in Human Brain Oscillations , 2001, The Journal of Neuroscience.

[27]  D. Sumpter,et al.  Phase transition between disordered and ordered foraging in Pharaoh's ants , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Lawrence M. Ward,et al.  Dynamical Cognitive Science , 2001 .

[29]  K. Tamura,et al.  Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci U S A , 2001 .

[30]  N. Logothetis The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[31]  Kim Christensen,et al.  A complexity view of rainfall. , 2002, Physical review letters.

[32]  Kim Christensen,et al.  Rain: relaxations in the sky. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  J. M. Herrmann,et al.  Finite-size effects of avalanche dynamics. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[35]  J. T. Enright,et al.  Are the electroencephalograms mainly rhythmic? Assessment of periodicity in wide-band time series , 2003, Neuroscience.

[36]  Dante R. Chialvo Critical brain networks , 2004 .

[37]  P. Alstrøm,et al.  COMPLEXITY AND CRITICALITY , 2004 .

[38]  C. Stam,et al.  Scale‐free dynamics of global functional connectivity in the human brain , 2004, Human brain mapping.

[39]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[40]  John M. Beggs,et al.  Behavioral / Systems / Cognitive Neuronal Avalanches Are Diverse and Precise Activity Patterns That Are Stable for Many Hours in Cortical Slice Cultures , 2004 .

[41]  N. Logothetis,et al.  Neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging , 2004 .

[42]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.

[43]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[44]  Stephen M. Smith,et al.  Investigations into resting-state connectivity using independent component analysis , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[45]  E. Bullmore,et al.  Neurophysiological architecture of functional magnetic resonance images of human brain. , 2005, Cerebral cortex.

[46]  J. Deneubourg,et al.  Collective decision making through food recruitment , 1990, Insectes Sociaux.

[47]  J. David Neelin,et al.  Critical phenomena in atmospheric precipitation , 2006 .

[48]  S. Rombouts,et al.  Consistent resting-state networks across healthy subjects , 2006, Proceedings of the National Academy of Sciences.

[49]  D. Plenz,et al.  Inverted-U Profile of Dopamine–NMDA-Mediated Spontaneous Avalanche Recurrence in Superficial Layers of Rat Prefrontal Cortex , 2006, The Journal of Neuroscience.

[50]  G. Buzsáki Rhythms of the brain , 2006 .

[51]  Roel H. R. Deckers,et al.  Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages. , 2006, Magnetic resonance imaging.

[52]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[53]  C. Bédard,et al.  Does the 1/f frequency scaling of brain signals reflect self-organized critical states? , 2006, Physical review letters.

[54]  O. Kinouchi,et al.  Optimal dynamical range of excitable networks at criticality , 2006, q-bio/0601037.

[55]  Tomoki Fukai,et al.  Local cortical circuit model inferred from power-law distributed neuronal avalanches , 2007, Journal of Computational Neuroscience.

[56]  D. Plenz,et al.  The organizing principles of neuronal avalanches: cell assemblies in the cortex? , 2007, Trends in Neurosciences.

[57]  S. Kauffman,et al.  Robustness and evolvability in genetic regulatory networks. , 2007, Journal of theoretical biology.

[58]  V. Torre,et al.  On the Dynamics of the Spontaneous Activity in Neuronal Networks , 2007, PloS one.

[59]  Justin L. Vincent,et al.  Intrinsic functional architecture in the anaesthetized monkey brain , 2007, Nature.

[60]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[61]  Olaf Sporns,et al.  Network structure of cerebral cortex shapes functional connectivity on multiple time scales , 2007, Proceedings of the National Academy of Sciences.

[62]  Zbigniew R Struzik,et al.  Universal scaling law in human behavioral organization. , 2007, Physical review letters.

[63]  V. Calhoun,et al.  Aberrant "default mode" functional connectivity in schizophrenia. , 2007, The American journal of psychiatry.

[64]  J. M. Herrmann,et al.  Dynamical synapses causing self-organized criticality in neural networks , 2007, 0712.1003.

[65]  J. J. Torres,et al.  Cooperative behavior in neural systems : ninth Granada Lectures, Granada, Spain 11-15 September 2006 , 2007 .

[66]  A. Kleinschmidt,et al.  Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions , 2006, Human brain mapping.

[67]  Cornelis J. Stam,et al.  Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain , 2008, NeuroImage.

[68]  S. Kauffman,et al.  Critical Dynamics in Genetic Regulatory Networks: Examples from Four Kingdoms , 2008, PloS one.

[69]  D. Chialvo,et al.  Beyond Feeling: Chronic Pain Hurts the Brain, Disrupting the Default-Mode Network Dynamics , 2008, The Journal of Neuroscience.

[70]  L. Hood,et al.  Gene expression dynamics in the macrophage exhibit criticality , 2008, Proceedings of the National Academy of Sciences.

[71]  L. L. Bologna,et al.  Self-organization and neuronal avalanches in networks of dissociated cortical neurons , 2008, Neuroscience.

[72]  D. Plenz,et al.  Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3 , 2008, Proceedings of the National Academy of Sciences.

[73]  Alan C. Evans,et al.  Structural Insights into Aberrant Topological Patterns of Large-Scale Cortical Networks in Alzheimer's Disease , 2008, The Journal of Neuroscience.

[74]  Dietmar Plenz,et al.  Scaling properties of neuronal avalanches are consistent with critical dynamics , 2009, 0912.5369.

[75]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[76]  S. Debener,et al.  Default-mode brain dysfunction in mental disorders: A systematic review , 2009, Neuroscience & Biobehavioral Reviews.

[77]  D. Plenz,et al.  Spontaneous cortical activity in awake monkeys composed of neuronal avalanches , 2009, Proceedings of the National Academy of Sciences.

[78]  M. Magnasco,et al.  Self-tuned critical anti-Hebbian networks. , 2009, Physical review letters.

[79]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[80]  D. R. Chialvo,et al.  Unraveling the fluctuations of animal motor activity. , 2009, Chaos.

[81]  Jeffrey G. Ojemann,et al.  Power-Law Scaling in the Brain Surface Electric Potential , 2009, PLoS Comput. Biol..

[82]  Edward T. Bullmore,et al.  Broadband Criticality of Human Brain Network Synchronization , 2009, PLoS Comput. Biol..

[83]  Jeremy R. Manning,et al.  Broadband Shifts in Local Field Potential Power Spectra Are Correlated with Single-Neuron Spiking in Humans , 2009, The Journal of Neuroscience.

[84]  D. Chialvo,et al.  Ising-like dynamics in large-scale functional brain networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[85]  J. Touboul,et al.  Can Power-Law Scaling and Neuronal Avalanches Arise from Stochastic Dynamics? , 2009, PloS one.

[86]  G. Parisi,et al.  Scale-free correlations in starling flocks , 2009, Proceedings of the National Academy of Sciences.

[87]  J J Torres,et al.  Unstable dynamics, nonequilibrium phases, and criticality in networked excitable media. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[88]  D. Sornette,et al.  Epileptic seizures: Quakes of the brain? , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[89]  Gerhard Werner,et al.  Fractals in the Nervous System: Conceptual Implications for Theoretical Neuroscience , 2009, Front. Physiology.

[90]  L. de Arcangelis,et al.  Learning as a phenomenon occurring in a critical state , 2010, Proceedings of the National Academy of Sciences.

[91]  W. Singer,et al.  Neuronal avalanches in spontaneous activity in vivo. , 2010, Journal of neurophysiology.

[92]  E. Mohammadi,et al.  Barriers and facilitators related to the implementation of a physiological track and trigger system: A systematic review of the qualitative evidence , 2017, International journal for quality in health care : journal of the International Society for Quality in Health Care.