On the maximum of the magnitude of the electrophoretic mobility of a spherical colloidal particle in an electrolyte solution
暂无分享,去创建一个
[1] H. Sugioka. dc Step response of induced-charge electro-osmosis between parallel electrodes at large voltages. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.
[2] H. Ohshima. Simple approximate analytic expression for the electrophoretic mobility of a spherical colloidal particle in a mixed solution of 1:1 and 2:1 electrolytes , 2014, Colloid and Polymer Science.
[3] H. Ohshima. Approximate analytic expression for the electrophoretic mobility of a cylindrical colloidal particle. Relaxation effect , 2014, Colloid and Polymer Science.
[4] Motoyoshi Kobayashi,et al. Electrophoretic mobility of latex spheres in mixture solutions containing mono and divalent counter ions , 2014 .
[5] M. Ibáñez,et al. Electrophoretic mobility of latex nanospheres in electrolytes: Experimental challenges , 2012 .
[6] 大島 広行. Electrical phenomena at interfaces and biointerfaces : fundamentals and applications in nano-, bio-, and environmental sciences , 2012 .
[7] H. Ohshima. Biophysical Chemistry of Biointerfaces , 2010 .
[8] H. Ohshima. Biophysical Chemistry of Biointerfaces: Ohshima/Biophysical Chemistry of Biointerfaces , 2010 .
[9] Motoyoshi Kobayashi. Electrophoretic mobility of latex spheres in the presence of divalent ions: experiments and modeling , 2008 .
[10] 大島 広行,et al. Theory of colloid and interfacial electric phenomena , 2006 .
[11] Aleksandar M. Spasic,et al. Finely Dispersed Particles : Micro-, Nano-, and Atto-Engineering , 2005 .
[12] H. Ohshima. Approximate expression for the electrophoretic mobility of a spherical colloidal particle in a solution of general electrolytes , 2005 .
[13] H. Ohshima. Electrophoretic mobility of a highly charged colloidal particle in a solution of general electrolytes. , 2004, Journal of colloid and interface science.
[14] H. Ohshima. On the limiting electrophoretic mobility of a highly charged colloidal particle in an electrolyte solution. , 2003, Journal of colloid and interface science.
[15] H. Ohshima. Approximate Analytic Expression for the Electrophoretic Mobility of a Spherical Colloidal Particle. , 2001, Journal of colloid and interface science.
[16] Hiroyuki Ohshima,et al. A Simple Expression for Henry's Function for the Retardation Effect in Electrophoresis of Spherical Colloidal Particles , 1994 .
[17] S. Dukhin,et al. Non-equilibrium electric surface phenomena , 1993 .
[18] 北原 文雄,et al. Electrical phenomena at interfaces : fundamentals, measurements, and applications , 1984 .
[19] R. W. O'Brien. The solution of the electrokinetic equations for colloidal particles with thin double layers , 1983 .
[20] H. Ohshima,et al. Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions , 1983 .
[21] R. J. Hunter,et al. The electrophoretic mobility of large colloidal particles , 1981 .
[22] Lee R. White,et al. Electrophoretic mobility of a spherical colloidal particle , 1978 .
[23] F. Booth,et al. The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[24] J. T. G. Overbeek. Theorie der Elektrophorese , 1943, Kolloid-Beihefte.
[25] D. C. Henry. The cataphoresis of suspended particles. Part I.—The equation of cataphoresis , 1931 .
[26] M. Smoluchowski,et al. Elektrische Endosmose und Strömungsströme , 1928 .