On the maximum of the magnitude of the electrophoretic mobility of a spherical colloidal particle in an electrolyte solution

[1]  H. Sugioka dc Step response of induced-charge electro-osmosis between parallel electrodes at large voltages. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  H. Ohshima Simple approximate analytic expression for the electrophoretic mobility of a spherical colloidal particle in a mixed solution of 1:1 and 2:1 electrolytes , 2014, Colloid and Polymer Science.

[3]  H. Ohshima Approximate analytic expression for the electrophoretic mobility of a cylindrical colloidal particle. Relaxation effect , 2014, Colloid and Polymer Science.

[4]  Motoyoshi Kobayashi,et al.  Electrophoretic mobility of latex spheres in mixture solutions containing mono and divalent counter ions , 2014 .

[5]  M. Ibáñez,et al.  Electrophoretic mobility of latex nanospheres in electrolytes: Experimental challenges , 2012 .

[6]  大島 広行 Electrical phenomena at interfaces and biointerfaces : fundamentals and applications in nano-, bio-, and environmental sciences , 2012 .

[7]  H. Ohshima Biophysical Chemistry of Biointerfaces , 2010 .

[8]  H. Ohshima Biophysical Chemistry of Biointerfaces: Ohshima/Biophysical Chemistry of Biointerfaces , 2010 .

[9]  Motoyoshi Kobayashi Electrophoretic mobility of latex spheres in the presence of divalent ions: experiments and modeling , 2008 .

[10]  大島 広行,et al.  Theory of colloid and interfacial electric phenomena , 2006 .

[11]  Aleksandar M. Spasic,et al.  Finely Dispersed Particles : Micro-, Nano-, and Atto-Engineering , 2005 .

[12]  H. Ohshima Approximate expression for the electrophoretic mobility of a spherical colloidal particle in a solution of general electrolytes , 2005 .

[13]  H. Ohshima Electrophoretic mobility of a highly charged colloidal particle in a solution of general electrolytes. , 2004, Journal of colloid and interface science.

[14]  H. Ohshima On the limiting electrophoretic mobility of a highly charged colloidal particle in an electrolyte solution. , 2003, Journal of colloid and interface science.

[15]  H. Ohshima Approximate Analytic Expression for the Electrophoretic Mobility of a Spherical Colloidal Particle. , 2001, Journal of colloid and interface science.

[16]  Hiroyuki Ohshima,et al.  A Simple Expression for Henry's Function for the Retardation Effect in Electrophoresis of Spherical Colloidal Particles , 1994 .

[17]  S. Dukhin,et al.  Non-equilibrium electric surface phenomena , 1993 .

[18]  北原 文雄,et al.  Electrical phenomena at interfaces : fundamentals, measurements, and applications , 1984 .

[19]  R. W. O'Brien The solution of the electrokinetic equations for colloidal particles with thin double layers , 1983 .

[20]  H. Ohshima,et al.  Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspensions , 1983 .

[21]  R. J. Hunter,et al.  The electrophoretic mobility of large colloidal particles , 1981 .

[22]  Lee R. White,et al.  Electrophoretic mobility of a spherical colloidal particle , 1978 .

[23]  F. Booth,et al.  The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[24]  J. T. G. Overbeek Theorie der Elektrophorese , 1943, Kolloid-Beihefte.

[25]  D. C. Henry The cataphoresis of suspended particles. Part I.—The equation of cataphoresis , 1931 .

[26]  M. Smoluchowski,et al.  Elektrische Endosmose und Strömungsströme , 1928 .