Clathrate and Ammonia Hydrates at High Pressure: Application to the Origin of Methane on Titan

[1]  J. Lissauer,et al.  Formation of Giant Planets , 2004, 1806.05649.

[2]  Mary L. Johnson,et al.  The ammonia‐water phase diagram and its implications for icy satellites , 1987 .

[3]  T. Geballe,et al.  Search for Interstellar Methane , 1985 .

[4]  J. Lunine,et al.  Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system , 1985 .

[5]  T. D. Jones,et al.  Shock-produced hydrocarbons in Titan's atmosphere. , 1985 .

[6]  D. A. Spence,et al.  Magma‐driven propagation of cracks , 1985 .

[7]  E. Whalley,et al.  ‘Melting ice’ I at 77 K and 10 kbar: a new method of making amorphous solids , 1984, Nature.

[8]  J. Bertie,et al.  Ammonia dihydrate: Preparation, x‐ray powder diffraction pattern and infrared spectrum of NH3⋅2H2O at 100 K , 1984 .

[9]  M. Allen,et al.  Photochemistry of the atmosphere of Titan: comparison between model and observations. , 1984, The Astrophysical journal. Supplement series.

[10]  P. Helfenstein,et al.  Patterns of Fracture and Tidal Stresses Due to Nonsynchronous Rotation: Implications for Fracturing on Europa , 1984 .

[11]  J. Lunine,et al.  Ethane Ocean on Titan , 1983, Science.

[12]  J. Weertman Creep Deformation of Ice , 1983 .

[13]  Mitsuru Ebihara,et al.  Solar-system abundances of the elements , 1982 .

[14]  J. Lunine,et al.  Formation of the Galilean satellites in a gaseous nebula , 1982 .

[15]  D. Stevenson,et al.  Volcanism and igneous processes in small icy satellites , 1982, Nature.

[16]  R. G. Ross,et al.  Clathrate and other solid phases in the tetrahydrofuran–water system: thermal conductivity and heat capacity under pressure , 1982 .

[17]  D. Stevenson Migration of Fluid-Filled Cracks: Applications to Terrestrial and Icy Bodies , 1982 .

[18]  R. Prinn,et al.  Kinetic inhibition of CO and N2 reduction in circumplanetary nebulae - Implications for satellite composition , 1981 .

[19]  Henry B. Hotz,et al.  The atmosphere of Titan: An analysis of the Voyager 1 radio occultation measurements , 1981 .

[20]  J. S. Lewis,et al.  Kinetic inhibition of CO and N2 reduction in the solar nebula , 1980 .

[21]  P. Cassen,et al.  On the comparative evolution of Ganymede and Callisto , 1980 .

[22]  JOHN S. Lewis,et al.  Mass-radius relationships in icy satellites , 1979 .

[23]  S. Atreya,et al.  Evolution of a Nitrogen Atmosphere on Titan , 1978, Science.

[24]  JOHN S. Lewis The Temperature Gradient in the Solar Nebula , 1974, Science.

[25]  J. Weertman Theory of water-filled crevasses in glaciers applied to vertical magma transport beneath oceanic ridges , 1971 .

[26]  G. Kennedy,et al.  The melting curve of five gases to 30 KB , 1967 .

[27]  W. Giauque,et al.  The Entropy of NH3·2H2O. Heat Capacity from 15 to 300°K.1 , 1964 .

[28]  W. Giauque,et al.  Ammonium Oxide and Ammonium Hydroxide. Heat Capacities and Thermodynamic Properties from 15 to 300°K.1 , 1953 .

[29]  R. H. Oppermann,et al.  Properties of ordinary water-substance: by N. Ernest Dorsey. 673 pages, illustrations, tables, 16 × 24 cms. New York, Reinhold Publishing Corporation, 1940.Price $15.00. , 1940 .

[30]  Randolph L. Kirk,et al.  Thermal evolution of a differentiated Ganymede and implications for surface features , 1987 .

[31]  J. Lunine,et al.  Origins of satellites , 1986 .

[32]  J. Lunine,et al.  Evolution of Titan's coupled Ocean-Atmosphere system and interaction of ocean with bedrock , 1985 .

[33]  H. C. Heard,et al.  Rheologies of H20 Ices Ih, II, And III at High Pressures: A Progress Report , 1985 .

[34]  W. Kauzmann,et al.  The Structure and Properties of Water , 1969 .

[35]  I. I. Clifford,et al.  The System Ammonia–Water at Temperatures up to 150°C. and at Pressures up to Twenty Atmospheres. , 1932 .