Monoclonal Antibody Targeted Radiation Cancer Therapy

[1]  M. Brechbiel,et al.  Antibody-targeted radiation cancer therapy , 2004, Nature Reviews Drug Discovery.

[2]  A. Kassis The Amazing World of Auger Electrons , 2004, International journal of radiation biology.

[3]  M. Brechbiel,et al.  Selective T-cell ablation with bismuth-213–labeled anti-TCRαβ as nonmyeloablative conditioning for allogeneic canine marrow transplantation , 2003 .

[4]  P. Johnston,et al.  The interaction of thymidylate synthase expression with p53-regulated signaling pathways in tumor cells. , 2003, Seminars in oncology.

[5]  M. Brechbiel,et al.  A comparison of 4 radionuclides conjugated to antibodies for single-cell kill. , 2003, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[6]  M. Glennie,et al.  The mechanisms of action of rituximab in the elimination of tumor cells. , 2003, Seminars in oncology.

[7]  D. Milenic Monoclonal antibody-based therapy strategies: providing options for the cancer patient. , 2002, Current pharmaceutical design.

[8]  J. Humm,et al.  Targeted α particle immunotherapy for myeloid leukemia , 2002 .

[9]  L. Chappell,et al.  In vivo comparison of macrocyclic and acyclic ligands for radiolabeling of monoclonal antibodies with 177Lu for radioimmunotherapeutic applications. , 2002, Nuclear medicine and biology.

[10]  A. Schubiger,et al.  Copper-67 as a therapeutic nuclide for radioimmunotherapy , 2002, European Journal of Nuclear Medicine and Molecular Imaging.

[11]  D. Scheinberg,et al.  Tumor Therapy with Targeted Atomic Nanogenerators , 2001, Science.

[12]  T. Waldmann,et al.  Comparative cellular catabolism and retention of astatine-, bismuth-, and lead-radiolabeled internalizing monoclonal antibody. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[13]  G. Hortobagyi,et al.  Integration of trastuzumab into adjuvant systemic therapy of breast cancer: ongoing and planned clinical trials. , 2001, Seminars in oncology.

[14]  E. Dadachova,et al.  Recent advances in radionuclide therapy. , 2001, Seminars in nuclear medicine.

[15]  M. Brechbiel,et al.  The development of the alpha-particle emitting radionuclides 212Bi and 213Bi, and their decay chain related radionuclides, for therapeutic applications. , 2001, Chemical reviews.

[16]  S. Mirzadeh,et al.  In vivo evaluation of bismuth-labeled monoclonal antibody comparing DTPA-derived bifunctional chelates. , 2001, Cancer biotherapy & radiopharmaceuticals.

[17]  S S Gambhir,et al.  High-resolution microPET imaging of carcinoembryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Welch,et al.  In vivo transchelation of copper-64 from TETA-octreotide to superoxide dismutase in rat liver. , 2000, Bioconjugate chemistry.

[19]  M. Béhé,et al.  Therapeutic advantages of Auger electron- over β-emitting radiometals or radioiodine when conjugated to internalizing antibodies , 2000, European Journal of Nuclear Medicine.

[20]  D. Milenic Radioimmunotherapy: designer molecules to potentiate effective therapy. , 2000, Seminars in radiation oncology.

[21]  R. Meredith,et al.  Clinical radioimmunotherapy. , 2000, Seminars in radiation oncology.

[22]  L. Presta,et al.  Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets , 2000, Nature Medicine.

[23]  S Shen,et al.  A clinical trial of radioimmunotherapy with 67Cu-2IT-BAT-Lym-1 for non-Hodgkin's lymphoma. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[24]  M. Cragg,et al.  Signaling antibodies in cancer therapy. , 1999, Current opinion in immunology.

[25]  S. Mirzadeh,et al.  In vivo comparison of CHX-DTPA ligand isomers in athymic mice bearing carcinoma xenografts. , 1999, Cancer biotherapy & radiopharmaceuticals.

[26]  J. Poen,et al.  Monoclonal antibody to HER-2/neureceptor modulates repair of radiation-induced DNA damage and enhances radiosensitivity of human breast cancer cells overexpressing this oncogene. , 1999, Cancer research.

[27]  S. Adelstein,et al.  Comparison of strand breaks in plasmid DNA after positional changes of Auger electron-emitting iodine-125. , 1999, Radiation research.

[28]  M. Goldenberg Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. , 1999, Clinical therapeutics.

[29]  J. Humm,et al.  Radioimmunotherapy with alpha-emitting nuclides , 1998, European Journal of Nuclear Medicine.

[30]  G. Denardo,et al.  Maximum tolerated dose of 67Cu-2IT-BAT-LYM-1 for fractionated radioimmunotherapy of non-Hodgkin's lymphoma: a pilot study. , 1998, Anticancer research.

[31]  D. Goldenberg,et al.  The advantage of residualizing radiolabels for targeting B‐cell lymphomas with a radiolabeled anti‐CD22 monoclonal antibody , 1997, International journal of cancer.

[32]  J. Schlom,et al.  Intraperitoneal radioimmunotherapy of ovarian cancer with 177Lu-CC49: a phase I/II study. , 1997, Gynecologic oncology.

[33]  I Royston,et al.  IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. , 1997, Blood.

[34]  M. Zalutsky,et al.  Targeted therapy using alpha emitters. , 1996, Physics in medicine and biology.

[35]  M. Welch,et al.  Comparison of four bifunctional chelates for radiolabeling monoclonal antibodies with copper radioisotopes: biodistribution and metabolism. , 1996, Bioconjugate chemistry.

[36]  G. Curt,et al.  Phase I study of intravenous Lu-labeled CC49 murine monoclonal antibody in patients with advanced adenocarcinoma. , 1995, Clinical cancer research : an official journal of the American Association for Cancer Research.

[37]  T. Wheldon,et al.  Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[38]  T. Waldmann,et al.  Radioimmunotherapy of Nude Mice Bearing a Human Interleukin 2 Receptor α-expressing Lymphoma Utilizing the α-emitting Radionuclide-conjugated Monoclonal Antibody 212Bi-anti-Tac , 1994 .

[39]  S. Goddu,et al.  Multicellular dosimetry for micrometastases: dependence of self-dose versus cross-dose to cell nuclei on type and energy of radiation and subcellular distribution of radionuclides. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[40]  J. Schlom,et al.  Biodistribution and preclinical radioimmunotherapy studies using radiolanthanide‐labeled immunoconjugates , 1994, Cancer.

[41]  J. Baselga,et al.  Receptor blockade with monoclomal antibodies as anti-cancer therapy , 1994 .

[42]  I. Gardin,et al.  The influence of tracer localization on the electron dose rate delivered to the cell nucleus. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[43]  G. Schieven,et al.  Association of tyrosine and serine kinases with the B cell surface antigen CD20. Induction via CD20 of tyrosine phosphorylation and activation of phospholipase C-gamma 1 and PLC phospholipase C-gamma 2. , 1993, Journal of immunology.

[44]  Geerlings Mw,et al.  Radionuclides for radioimmunotherapy: criteria for selection , 1993 .

[45]  P. Thorpe,et al.  Targeting the vasculature of solid tumors , 1993 .

[46]  M. Brechbiel,et al.  Synthesis of C-functionalized trans-cyclohexyldiethylenetriaminepenta-acetic acids for labelling of monoclonal antibodies with the bismuth-212 α-particle emitter , 1992 .

[47]  A. Ullrich,et al.  Characterization of an anti-p185HER2 monoclonal antibody that stimulates receptor function and inhibits tumor cell growth. , 1991, Growth regulation.

[48]  S. Broder Molecular Foundations of Oncology , 1992, Annals of Internal Medicine.

[49]  S. Mirzadeh,et al.  Improved in vivo stability and tumor targeting of bismuth-labeled antibody. , 1990, Cancer research.

[50]  S. Adelstein,et al.  Auger electron emitters: Insights gained from in vitro experiments , 1990, Radiation and environmental biophysics.

[51]  P. Möller,et al.  Monoclonal antibody-mediated tumor regression by induction of apoptosis. , 1989, Science.

[52]  M. Brechbiel,et al.  212Bismuth linked to an antipancreatic carcinoma antibody: model for alpha-particle-emitter radioimmunotherapy. , 1988, Journal of the National Cancer Institute.

[53]  S. Adelstein,et al.  Kinetics of uptake, retention, and radiotoxicity of 125IUdR in mammalian cells: implications of localized energy deposition by Auger processes. , 1987, Radiation research.

[54]  J L Humm,et al.  Dosimetric aspects of radiolabeled antibodies for tumor therapy. , 1986, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[55]  T. Waldmann,et al.  A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T cells. II. Expression of Tac antigen on activated cytotoxic killer T cells, suppressor cells, and on one of two types of helper T cells. , 1981, Journal of immunology.

[56]  C. Milstein,et al.  Continuous cultures of fused cells secreting antibody of predefined specificity , 1975, Nature.

[57]  P. Ehrlich,et al.  Über einige Verwendungen der Naphtochinonsulfosäure. , 1904 .