Coalgebras and Modal Expansions of Logics

In this paper we construct a setting in which the question of when a logic supports a classical modal expansion can be made precise. Given a fully selfextensional logic S, we find sufficient conditions under which the Vietoris endofunctor V on S-referential algebras can be defined and we propose to define the modal expansions of S as the logic that arises from the V-coalgebras. As an example, we also show how the Vietoris endofunctor on referential algebras extends the Vietoris endofunctor on Stone spaces.From another point of view, we examine when a category of 'spaces' (X,A), ie sets X equipped with an algebra A of subsets of X, allows for the definition of powerspaces V (and hence transition systems (X,A)→V(X,A)).

[1]  R. Wójcicki Theory of Logical Calculi: Basic Theory of Consequence Operations , 1988 .

[2]  David M. Clark,et al.  Natural Dualities for the Working Algebraist , 1998 .

[3]  Yde Venema,et al.  Stone coalgebras , 2004, Theor. Comput. Sci..

[4]  J. Meigs,et al.  WHO Technical Report , 1954, The Yale Journal of Biology and Medicine.

[5]  M. Gehrke,et al.  Bounded Lattice Expansions , 2001 .

[6]  S. Griffis EDITOR , 1997, Journal of Navigation.

[7]  Alessandra Palmigiano,et al.  Coalgebraic Semantics for Positive Modal Logic , 2003, CMCS.

[8]  R. Wójcicki Matrix approach in methodology of sentential calculi , 1973 .

[9]  Alessandra Palmigiano,et al.  A coalgebraic view on positive modal logic , 2004, Theor. Comput. Sci..

[10]  Ryszard Wójcicki,et al.  Theory of Logical Calculi , 1988 .

[11]  T. Hall,et al.  Journal of Algebra , 1964, Nature.