The Atacama Cosmology Telescope: the stellar content of galaxy clusters selected using the Sunyaev–Zel'dovich effect

We present a first measurement of the stellar mass component of galaxy clusters selected via the Sunyaev-Zel’dovich (SZ) effect, using 3.6 m and 4.5 m photometry from the Spitzer Space Telescope. Our sample consists of 14 clusters detected by the Atacama Cosmology Telescope (ACT), which span the redshift range 0:27 < z < 1:07 (median z = 0:50), and have dynamical mass measurements, accurate to about 30 per cent, with median M500 = 6:9 10 14 M . We measure the 3.6 m and 4.5 m galaxy luminosity functions, finding the characteristic magnitude (m ) and faint-end slope (a) to be similar to those for IR-selected cluster samples. We perform the first measurements of the scaling of SZ-observables (Y500 and y0) with both brightest cluster galaxy (BCG) stellar mass and total cluster stellar mass (M star ). We find a significant correlation between BCG stellar mass and Y500 (E(z) 2=3 D 2 Y500 µ M 1:2 0:6 ), although we are not able to obtain a strong constraint on the slope of the relation due to the small sample size. Additionally, we obtain E(z) 2=3 D 2 Y500 µ M star 500 1:0 0:6 for

[1]  David N. Spergel,et al.  The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxy clusters at 148 GHz from three seasons of data , 2013, 1301.0816.

[2]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: PHYSICAL PROPERTIES OF SUNYAEV–ZEL'DOVICH EFFECT CLUSTERS ON THE CELESTIAL EQUATOR, , 2012, 1210.4048.

[3]  J. Bond,et al.  ON THE CLUSTER PHYSICS OF SUNYAEV–ZEL'DOVICH AND X-RAY SURVEYS. III. MEASUREMENT BIASES AND COSMOLOGICAL EVOLUTION OF GAS AND STELLAR MASS FRACTIONS , 2012, 1209.4082.

[4]  H. Hoekstra,et al.  Evidence for Significant Growth in the Stellar Mass of Brightest Cluster Galaxies over the Past 10 Billion Years , 2012, 1208.5143.

[5]  Peter A. R. Ade,et al.  THE ATACAMA COSMOLOGY TELESCOPE: DATA CHARACTERIZATION AND MAPMAKING , 2012, 1208.0050.

[6]  Chris A. Collins,et al.  Measurement of the intracluster light at z ∼ 1 , 2012, 1206.4735.

[7]  R. Davies,et al.  Systematic variation of the stellar initial mass function in early-type galaxies , 2012, Nature.

[8]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: DYNAMICAL MASSES AND SCALING RELATIONS FOR A SAMPLE OF MASSIVE SUNYAEV–ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTERS , 2012, 1201.0991.

[9]  U. Chicago,et al.  BARYON CONTENT OF MASSIVE GALAXY CLUSTERS AT z = 0–0.6 , 2011, 1112.1705.

[10]  Jeffrey M. Kubo,et al.  THE SLOAN DIGITAL SKY SURVEY COADD: 275 deg2 OF DEEP SLOAN DIGITAL SKY SURVEY IMAGING ON STRIPE 82 , 2011, The Astrophysical Journal.

[11]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions , 2011, 1111.0166.

[12]  Liverpool John Moores University,et al.  The evolution of K* and the halo occupation distribution since z= 1.5: observations versus simulations , 2011, 1109.5735.

[13]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: ACT-CL J0102−4915 “EL GORDO,” A MASSIVE MERGING CLUSTER AT REDSHIFT 0.87 , 2011, 1109.0953.

[14]  A. Finoguenov,et al.  THE INTEGRATED STELLAR CONTENT OF DARK MATTER HALOS , 2011, 1109.0010.

[15]  T. E. Clarke,et al.  A VERY DEEP CHANDRA OBSERVATION OF A2052: BUBBLES, SHOCKS, AND SLOSHING , 2011, 1105.4572.

[16]  A. Finoguenov,et al.  Direct observational evidence for a large transient galaxy population in groups at 0.85 < z < 1 , 2010, 1011.5509.

[17]  V. Eke,et al.  The stellar and hot gas content of low-mass galaxy clusters , 2010, 1011.0602.

[18]  M. Halpern,et al.  THE ATACAMA COSMOLOGY TELESCOPE: SUNYAEV–ZEL'DOVICH-SELECTED GALAXY CLUSTERS AT 148 GHz IN THE 2008 SURVEY , 2010, 1010.1065.

[19]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGY FROM GALAXY CLUSTERS DETECTED VIA THE SUNYAEV–ZEL'DOVICH EFFECT , 2010, 1010.1025.

[20]  Pieter G. van Dokkum,et al.  A substantial population of low-mass stars in luminous elliptical galaxies , 2010, Nature.

[21]  R. Bender,et al.  Cluster galaxies in XMMU J2235-2557: galaxy population properties in most massive environments at z ∼1.4 , 2010, 1009.1423.

[22]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: CALIBRATION WITH THE WILKINSON MICROWAVE ANISOTROPY PROBE USING CROSS-CORRELATIONS , 2010, 1009.0777.

[23]  M. Brodwin,et al.  THE FORMATION OF MASSIVE CLUSTER GALAXIES , 2010, 1007.1454.

[24]  Edward J. Wollack,et al.  OVERVIEW OF THE ATACAMA COSMOLOGY TELESCOPE: RECEIVER, INSTRUMENTATION, AND TELESCOPE SYSTEMS , 2010, 1007.0290.

[25]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: PHYSICAL PROPERTIES AND PURITY OF A GALAXY CLUSTER SAMPLE SELECTED VIA THE SUNYAEV–ZEL'DOVICH EFFECT , 2010, The Astrophysical Journal.

[26]  P. A. R. Ade,et al.  X-RAY PROPERTIES OF THE FIRST SUNYAEV–ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTER SAMPLE FROM THE SOUTH POLE TELESCOPE , 2010, 1006.3068.

[27]  D. Capozzi,et al.  THE XMM CLUSTER SURVEY: THE BUILD-UP OF STELLAR MASS IN BRIGHTEST CLUSTER GALAXIES AT HIGH REDSHIFT , 2010, 1005.4681.

[28]  A. Edge,et al.  The X-ray brightest clusters of galaxies from the Massive Cluster Survey , 2010, 1004.4683.

[29]  S. Andreon The stellar mass fraction and baryon content of galaxy clusters and groups , 2010, 1004.2785.

[30]  J. R. Bond,et al.  SIMULATIONS OF THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM WITH ACTIVE GALACTIC NUCLEUS FEEDBACK , 2010, 1003.4256.

[31]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2010, 1001.4538.

[32]  M. Donahue,et al.  BRIGHTEST CLUSTER GALAXIES AND CORE GAS DENSITY IN REXCESS CLUSTERS , 2009, 0911.2798.

[33]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[34]  J. Ostriker,et al.  EXPLORING THE ENERGETICS OF INTRACLUSTER GAS WITH A SIMPLE AND ACCURATE MODEL , 2009, 0905.3748.

[35]  Institute for Astronomy,et al.  STELLAR AND TOTAL BARYON MASS FRACTIONS IN GROUPS AND CLUSTERS SINCE REDSHIFT 1 , 2009, 0904.0448.

[36]  Robert C. Nichol,et al.  Early assembly of the most massive galaxies , 2009, Nature.

[37]  J. Bartlett,et al.  EVOLUTION OF THE COLOR–MAGNITUDE RELATION IN GALAXY CLUSTERS AT z ∼ 1 FROM THE ACS INTERMEDIATE REDSHIFT CLUSTER SURVEY , 2008, 0810.1917.

[38]  T. Reiprich,et al.  AGN heating and ICM cooling in the HIFLUGCS sample of galaxy clusters , 2008, 0810.0797.

[39]  G. W. Pratt,et al.  Galaxy cluster X-ray luminosity scaling relations from a representative local sample (REXCESS) , 2008, 0809.3784.

[40]  Durham,et al.  The flip side of galaxy formation: a combined model of galaxy formation and cluster heating , 2008, 0808.2994.

[41]  S. Stanford,et al.  The Evolution of Dusty Star Formation and Stellar Mass Assembly in Clusters: Results from the IRAC 3.6, 4.5, 5.8, and 8.0 μm Cluster Luminosity Functions , 2008, 0807.0227.

[42]  A. Hornstrup,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT. II. SAMPLES AND X-RAY DATA REDUCTION , 2008, 0805.2207.

[43]  S. Kay,et al.  Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology , 2008, 0804.2486.

[44]  Edinburgh,et al.  The evolution of the brightest cluster galaxies since z∼ 1 from the ESO Distant Cluster Survey (EDisCS) , 2008, 0804.2152.

[45]  E. L. Wright,et al.  A Catalog of Mid-Infrared Sources in the Extended Groth Strip , 2008, 0803.0748.

[46]  S. Brough,et al.  The luminosity-halo mass relation for brightest cluster galaxies , 2008, 0801.1170.

[47]  A. M. Swinbank,et al.  Near-infrared evolution of brightest cluster galaxies in the most X-ray luminous clusters since z = 1 , 2007, 0712.0496.

[48]  Casey Papovich,et al.  TFIT: A Photometry Package Using Prior Information for Mixed‐Resolution Data Sets , 2007 .

[49]  H. Mo,et al.  Galaxy Groups in the SDSS DR4. II. Halo Occupation Statistics , 2007, 0710.5096.

[50]  IoA,et al.  Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters , 2007, 0706.0033.

[51]  B. Kelly Some Aspects of Measurement Error in Linear Regression of Astronomical Data , 2007, 0705.2774.

[52]  B. Garilli,et al.  The SWIRE-VVDS-CFHTLS surveys: stellar mass assembly over the last 10 Gyr. Evidence for a major build up of the red sequence between z = 2 and z = 1 , 2007, 0705.2438.

[53]  D. Zaritsky,et al.  A Census of Baryons in Galaxy Clusters and Groups , 2007, Proceedings of the International Astronomical Union.

[54]  A. Edge,et al.  A Complete Sample of 12 Very X-Ray Luminous Galaxy Clusters at z > 0.5 , 2007, astro-ph/0703394.

[55]  P. Rosati,et al.  The Rest-Frame K-Band Luminosity Function of Galaxies in Clusters to z = 1.3 , 2007, astro-ph/0702050.

[56]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview , 2006, astro-ph/0612305.

[57]  J. Mohr,et al.  Evolution of the K-Band Galaxy Cluster Luminosity Function and Scaling Relations , 2006, astro-ph/0609169.

[58]  G. Lucia,et al.  The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.

[59]  A. Biviano,et al.  RASS-SDSS galaxy cluster survey - VII. On the cluster mass-to-light ratio and the halo occupation distribution , 2006, astro-ph/0606260.

[60]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[61]  Y. Loh,et al.  The bright end of the luminosity function of red sequence galaxies , 2005, astro-ph/0510500.

[62]  G. Kauffmann,et al.  The formation history of elliptical galaxies , 2005, astro-ph/0509725.

[63]  R. Davies,et al.  The SAURON project - IV. The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies , 2005, astro-ph/0505042.

[64]  C. Carilli,et al.  The heating of gas in a galaxy cluster by X-ray cavities and large-scale shock fronts , 2005, Nature.

[65]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[66]  J. Mohr,et al.  K-band Properties of Galaxy Clusters and Groups: Brightest Cluster Galaxies and Intracluster Light , 2004, astro-ph/0408557.

[67]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: Luminosity functions by density environment and galaxy type , 2004, astro-ph/0407537.

[68]  J. Mohr,et al.  K-Band Properties of Galaxy Clusters and Groups: Luminosity Function, Radial Distribution, and Halo Occupation Number , 2004, astro-ph/0402308.

[69]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[70]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[71]  J. Mohr,et al.  Near-Infrared Properties of Galaxy Clusters: Luminosity as a Binding Mass Predictor and the State of Cluster Baryons , 2003, astro-ph/0304033.

[72]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: the luminosity function of cluster galaxies , 2002, astro-ph/0212562.

[73]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[74]  S. Brough,et al.  Evolution of brightest cluster galaxies in X ray clusters , 2001, astro-ph/0111364.

[75]  A. Edge,et al.  MACS: A Quest for the Most Massive Galaxy Clusters in the Universe , 2000, astro-ph/0009101.

[76]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[77]  J. Huchra,et al.  The ROSAT Brightest Cluster Sample - IV. The extended sample , 2000, astro-ph/0003191.

[78]  A. Evrard,et al.  The LX—T relation and intracluster gas fractions of X-ray clusters , 1998, astro-ph/9806353.

[79]  Cambridge,et al.  The K-band Hubble diagram for the brightest cluster galaxies: a test of hierarchical galaxy formation models , 1998, astro-ph/9801277.

[80]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[81]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[82]  J. Huchra,et al.  Properties of the X-ray-brightest Abell-type clusters of galaxies (XBACs) from ROSAT All-Sky Survey data - I. The sample , 1996, astro-ph/9602080.

[83]  M. Colless The dynamics of rich clusters. II. Luminosity functions. , 1989 .

[84]  S. Shectman,et al.  Evidence for substructure in rich clusters of galaxies from radial-velocity measurements , 1988 .

[85]  S. Tremaine,et al.  A test of a statistical model for the luminosities of bright cluster galaxies , 1977 .

[86]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[87]  J. B. Oke Absolute spectral energy distributions for white dwarfs , 1974 .

[88]  A. Sandage The redshift-distance relation. II. The Hubble diagram and its scatter for first-ranked cluster galaxies: A formal value for q 0 . , 1972 .

[89]  A. Biviano,et al.  RASS-SDSS galaxy cluster survey: IV. A ubiquitous dwarf galaxy population in clusters , 2006 .

[90]  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 4/12/04 A SYSTEMATIC STUDY OF RADIO-INDUCED X-RAY CAVITIES IN CLUSTERS, GROUPS, AND GALAXIES , 2004 .

[91]  D. Burke,et al.  Accepted for publication in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 04/03/99 CLUSTER SELECTION AND THE EVOLUTION OF BRIGHTEST CLUSTER GALAXIES , 2000 .

[92]  SUBMITTED TO APJ Preprint typeset using L ATEX style emulateapj THE LX − T RELATION AND TEMPERATURE FUNCTION FOR NEARBY CLUSTERS REVISITED , 1998 .

[93]  B. Hoyle,et al.  THE XMM CLUSTER SURVEY: GALAXY MORPHOLOGIES AND THE COLOR–MAGNITUDE RELATION IN XMMXCS J2215.9 − 1738 AT z = 1.46 , 2009, 0903.1731.

[94]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[95]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[96]  J. Gunn,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .

[97]  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 A NEW TEST OF THE STATISTICAL NATURE OF THE BRIGHTEST CLUSTER GALAXIES , 2022 .