Reassessment of the recombination parameters of chromium in n- and p-type crystalline silicon and chromium-boron pairs in p-type crystalline silicon

Injection-dependent lifetime spectroscopy of both n- and p-type, Cr-doped silicon wafers with different doping levels is used to determine the defect parameters of Cri and CrB pairs, by simultaneously fitting the measured lifetimes with the Shockley-Read-Hall model. A combined analysis of the two defects with the lifetime data measured on both n- and p-type samples enables a significant tightening of the uncertainty ranges of the parameters. The capture cross section ratios k = σn/σp of Cri and CrB are determined as 3.2 (−0.6, +0) and 5.8 (−3.4, +0.6), respectively. Courtesy of a direct experimental comparison of the recombination activity of chromium in n- and p-type silicon, and as also suggested by modelling results, we conclude that chromium has a greater negative impact on carrier lifetimes in p-type silicon than n-type silicon with similar doping levels.

[1]  Interpretation of Carrier Recombination Lifetime and Diffusion Length Measurements in Silicon , 1996 .

[2]  J. S. Blakemore Semiconductor Statistics , 1962 .

[3]  Hiroshi Kodera,et al.  Diffusion Coefficients of Impurities in Silicon Melt , 1963 .

[4]  Klaus Graff,et al.  Metal impurities in silicon-device fabrication , 1994 .

[5]  S. Dubois,et al.  Determination at 300K of the hole capture cross section of chromium-boron pairs in p-type silicon , 2006 .

[6]  Jennifer Wong-Leung,et al.  Capture cross sections of the acceptor level of iron–boron pairs in p-type silicon by injection-level dependent lifetime measurements , 2001 .

[7]  C. S. Fuller,et al.  Chemical interactions among defects in germanium and silicon , 1956 .

[8]  Karsten Bothe,et al.  Recombination activity of interstitial chromium and chromium-boron pairs in silicon , 2007 .

[9]  A. Cuevas,et al.  Electronic properties of light-induced recombination centers in boron-doped Czochralski silicon , 1999 .

[10]  D. Macdonald,et al.  Transition-metal profiles in a multicrystalline silicon ingot , 2005 .

[11]  D. Schroder,et al.  Deep‐level impurities in edge‐defined film‐fed‐growth silicon , 1995 .

[12]  D. Macdonald,et al.  Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon , 2004 .

[13]  D. Macdonald,et al.  Imaging interstitial iron concentrations in boron-doped crystalline silicon using photoluminescence , 2008 .

[14]  M. Schubert,et al.  Imaging of chromium point defects in p-type silicon , 2010 .

[15]  D. Macdonald Impact of nickel contamination on carrier recombination in n- and p-type crystalline silicon wafers , 2005 .

[16]  J. Davis,et al.  Crystal growth considerations in the use of “solar grade” silicon , 1977 .

[17]  Thomas Lauinger,et al.  Record low surface recombination velocities on 1 Ω cm p‐silicon using remote plasma silicon nitride passivation , 1996 .

[18]  E. Weber,et al.  Chromium and chromium-boron pairs in silicon , 1983 .

[19]  Eicke R. Weber,et al.  Transition metals in silicon , 1983 .

[20]  J. Kalejs,et al.  Metal Content of Multicrystalline Silicon for Solar Cells and its Impact on Minority Carrier Diffusion Length , 2003 .

[21]  W. Bergholz,et al.  A fast, preparation‐free method to detect iron in silicon , 1990 .

[22]  Armin G. Aberle,et al.  ACCURATE METHOD FOR THE DETERMINATION OF BULK MINORITY-CARRIER LIFETIMES OF MONO- AND MULTICRYSTALLINE SILICON WAFERS , 1997 .

[23]  R. Sinton,et al.  Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data , 1996 .

[24]  K. Bothe,et al.  Structure and transformation of the metastable boron- and oxygen-related defect center in crystalline silicon , 2004 .

[25]  Robert A. Brown,et al.  Modelling of directional solidification: from Scheil to detailed numerical simulation , 1991 .

[26]  L. Kimerling,et al.  Electronically controlled reactions of interstitial iron in silicon , 1983 .

[27]  B. Bathey,et al.  Solar-grade silicon , 1982 .

[28]  Adrienne L. Blum,et al.  Inter-laboratory study of eddy-current measurement of excess-carrier recombination lifetime , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[29]  H. Nakashima,et al.  Diffusion and Electrical Properties of 3d Transition-Metal Impurity Series in Silicon , 1993 .

[30]  Stefan Rein,et al.  Lifetime Spectroscopy : A Method of Defect Characterization in Silicon for Photovoltaic Applications , 2005 .

[31]  A. Istratov,et al.  Recombination activity of copper in silicon , 2001 .

[32]  Hangleiter Nonradiative recombination via deep impurity levels in silicon: Experiment. , 1987, Physical review. B, Condensed matter.

[33]  Andres Cuevas,et al.  Validity of simplified Shockley-Read-Hall statistics for modeling carrier lifetimes in crystalline silicon , 2003 .

[34]  K. Bothe,et al.  Electronically activated boron-oxygen-related recombination centers in crystalline silicon , 2006 .

[35]  W. Warta,et al.  Imaging of Metastable Defects in Silicon , 2011, IEEE Journal of Photovoltaics.

[36]  M. Schubert,et al.  Photoluminescence imaging of silicon wafers , 2006 .

[37]  D. Macdonald,et al.  Iron detection in crystalline silicon by carrier lifetime measurements for arbitrary injection and doping , 2004 .