Using model-based inference to evaluate global fisheries status from landings, location, and life history data

Assessing fishery collapses worldwide is hindered by the lack of biomass data for most stocks, leading to the use of landings-based proxies or the assumption that existing stock assessments are globally representative. We argue that the use of sparse assessments to evaluate fishery status requires model-based inference because assessment availability varies spatially and temporally, and we derive a model that extrapolates from assessment results to available landings, life history, and location data. This model uses logistic regression to classify stocks into different prediction bins and estimates the prob- ability of collapse in each using cross-validation. Results show that landings, life history, and location are informative to dis- criminate among different probabilities of collapse. We find little evidence that regions with fewer assessments have a greater proportion of collapsed stocks, while acknowledging weak inferential support regarding regions with one or fewer assessments. Our extrapolation suggests that 4.5%-6.5% of stocks defined by landings data are collapsed, but that this pro- portion is increasing. Finally, we propose a research agenda that combines stock assessment and landings databases while overcoming limitations in each. Resume : Le manque de donnees sur la biomasse pour la plupart des stocks limite l'evaluation de l'effondrement des pe- ches a l'echelle mondiale, de sorte qu'il est necessaire d'utiliser des donnees de substitution reposant sur les debarquements ou encore de presumer que les evaluations des stocks existantes sont representatives de la situation a l'echelle planetaire. Dans le present article, il est postule que l'utilisation d'un nombre limite d'evaluations pour evaluer l'etat des peches neces- site le recours a l'inference basee sur un modele puisque la disponibilite des evaluations varie dans l'espace et dans le temps. Un modele est en outre etabli qui extrapole des resultats d'evaluation aux donnees disponibles sur les debarquements, le cycle de vie et l'emplacement. Ce modele fait appel a la regression logistique pour classer les stocks selon differents com- partiments de prediction et estime la probabilite de l'effondrement de chaque stock a l'aide de la validation croisee. Les re- sultats montrent que les debarquements, le cycle de vie et l'emplacement constituent des renseignements utiles pour discriminer entre differentes probabilites d'effondrement. Peu de donnees probantes appuient la these voulant que les regions pour lesquelles moins d'evaluations sont disponibles aient une plus grande proportion de stocks effondres, bien qu'il convienne de souligner la faiblesse du support inferentiel pour les regions pour lesquelles une seule evaluation ou moins est disponible. L'extrapolation suggere que de 4,5 % a 6,5 % des stocks definis par les donnees sur les debarquements sont ef- fondres et que cette proportion est en hausse. Enfin, un programme de recherche est propose qui combine l'utilisation de ba- ses de donnees sur l'evaluation des stocks et sur les debarquements afin de contourner les problemes inherents a chacun de ces outils. (Traduit par la Redaction)

[1]  Malin L. Pinsky,et al.  Unexpected patterns of fisheries collapse in the world's oceans , 2011, Proceedings of the National Academy of Sciences.

[2]  R. Watson,et al.  Global fishery development patterns are driven by profit but not trophic level , 2010, Proceedings of the National Academy of Sciences.

[3]  Ian G. Taylor,et al.  Using a recruitment-linked multispecies stock assessment model to estimate common trends in recruitment for US West Coast groundfishes , 2013 .

[4]  R. Hilborn,et al.  Status and Solutions for the World’s Unassessed Fisheries , 2012, Science.

[5]  C. Walters Folly and fantasy in the analysis of spatial catch rate data , 2003 .

[6]  J. Rice,et al.  Apocalypse in world fisheries? The reports of their death are greatly exaggerated , 2011 .

[7]  R. Hilborn,et al.  Contrasting Global Trends in Marine Fishery Status Obtained from Catches and from Stock Assessments , 2011, Conservation biology : the journal of the Society for Conservation Biology.

[8]  Rainer Froese,et al.  Comments on FAO's State of Fisheries and Aquaculture, or ‘SOFIA 2010’ , 2012 .

[9]  E. Barbier,et al.  Response to Comments on "Impacts of Biodiversity Loss on Ocean Ecosystem Services" , 2007, Science.

[10]  David C. Smith,et al.  Lessons in modelling and management of marine ecosystems: the Atlantis experience , 2011 .

[11]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[12]  Cóilín Minto,et al.  Trends in the abundance of marine fishes , 2010 .

[13]  Jonathan A. Anticamara,et al.  journal homepage: www.elsevier.com/locate/fishres Global fishing effort (1950–2010): Trends, gaps, and implications , 2022 .

[14]  R. Hilborn,et al.  Rebuilding Global Fisheries , 2009, Science.

[15]  R. Hilborn,et al.  Reanalyses of Gulf of Mexico fisheries data: Landings can be misleading in assessments of fisheries and fisheries ecosystems , 2008, Proceedings of the National Academy of Sciences.

[16]  R G Edmonson TIME FOR A SEA CHANGE , 2003 .

[17]  Murdoch K. McAllister,et al.  Evaluating methods that classify fisheries stock status using only fisheries catch data , 2012 .

[18]  Carl J. Walters,et al.  Ecopath with Ecosim: methods, capabilities and limitations , 2004 .

[19]  J. Thorson,et al.  Spawning biomass reference points for exploited marine fishes, incorporating taxonomic and body size information , 2012 .

[20]  Cóilín Minto,et al.  Examining the knowledge base and status of commercially exploited marine species with the RAM Legacy Stock Assessment Database , 2012 .

[21]  B. Worm,et al.  The future of fish. , 2012, Trends in ecology & evolution.

[22]  Jameal F. Samhouri,et al.  Exploring Patterns of Seafood Provision Revealed in the Global Ocean Health Index , 2013, AMBIO.

[23]  Elizabeth A. Fulton,et al.  The trophic fingerprint of marine fisheries , 2010, Nature.

[24]  H. Akaike A new look at the statistical model identification , 1974 .

[25]  A. Zuur,et al.  Mixed Effects Models and Extensions in Ecology with R , 2009 .

[26]  C. Mullon,et al.  The dynamics of collapse in world fisheries , 2005 .

[27]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[28]  J. Thorson,et al.  A new role for effort dynamics in the theory of harvested populations and data-poor stock assessment , 2013 .

[29]  A. Punt,et al.  Standardizing catch and effort data: a review of recent approaches , 2004 .

[30]  S. Gaines,et al.  Can Catch Shares Prevent Fisheries Collapse? , 2008, Science.

[31]  William W L Cheung,et al.  Fisheries: hope or despair? , 2013, Marine pollution bulletin.

[32]  M. Wilberg,et al.  An Evaluation of Harvest Control Rules for Data-Poor Fisheries , 2013 .