FliH and FliI ensure efficient energy coupling of flagellar type III protein export in Salmonella

For construction of the bacterial flagellum, flagellar proteins are exported via its specific export apparatus from the cytoplasm to the distal end of the growing flagellar structure. The flagellar export apparatus consists of a transmembrane (TM) export gate complex and a cytoplasmic ATPase complex consisting of FliH, FliI, and FliJ. FlhA is a TM export gate protein and plays important roles in energy coupling of protein translocation. However, the energy coupling mechanism remains unknown. Here, we performed a cross‐complementation assay to measure robustness of the energy transduction system of the export apparatus against genetic perturbations. Vibrio FlhA restored motility of a Salmonella ΔflhA mutant but not that of a ΔfliH‐fliI flhB(P28T) ΔflhA mutant. The flgM mutations significantly increased flagellar gene expression levels, allowing Vibrio FlhA to exert its export activity in the ΔfliH‐fliI flhB(P28T) ΔflhA mutant. Pull‐down assays revealed that the binding affinities of Vibrio FlhA for FliJ and the FlgN–FlgK chaperone–substrate complex were much lower than those of Salmonella FlhA. These suggest that Vibrio FlhA requires the support of FliH and FliI to efficiently and properly interact with FliJ and the FlgN–FlgK complex. We propose that FliH and FliI ensure robust and efficient energy coupling of protein export during flagellar assembly.

[1]  S. Kojima,et al.  Nascent chain-monitored remodeling of the Sec machinery for salinity adaptation of marine bacteria , 2015, Proceedings of the National Academy of Sciences.

[2]  Katsumi Imada,et al.  The bacterial flagellar motor and its structural diversity. , 2015, Trends in microbiology.

[3]  Yusuke V. Morimoto,et al.  The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis , 2014, Scientific Reports.

[4]  K. Hughes,et al.  ATPase-Independent Type-III Protein Secretion in Salmonella enterica , 2014, PLoS genetics.

[5]  Yusuke V. Morimoto,et al.  Assembly dynamics and the roles of FliI ATPase of the bacterial flagellar export apparatus , 2014, Scientific Reports.

[6]  T. Minamino Protein export through the bacterial flagellar type III export pathway. , 2014, Biochimica et biophysica acta.

[7]  Yusuke V. Morimoto,et al.  Assembly and stoichiometry of FliF and FlhA in Salmonella flagellar basal body , 2014, Molecular microbiology.

[8]  K. Namba,et al.  Interactions of bacterial flagellar chaperone–substrate complexes with FlhA contribute to co‐ordinating assembly of the flagellar filament , 2013, Molecular microbiology.

[9]  Yusuke V. Morimoto,et al.  Common and distinct structural features of Salmonella injectisome and flagellar basal body , 2013, Scientific Reports.

[10]  S. Kojima,et al.  Structure, gene regulation and environmental response of flagella in Vibrio , 2013, Front. Microbiol..

[11]  K. Namba,et al.  Common Evolutionary Origin for the Rotor Domain of Rotary Atpases and Flagellar Protein Export Apparatus , 2013, PloS one.

[12]  K. Namba,et al.  Interaction between FliJ and FlhA, Components of the Bacterial Flagellar Type III Export Apparatus , 2012, Journal of bacteriology.

[13]  Yusuke V. Morimoto,et al.  Interaction of the Extreme N-Terminal Region of FliH with FlhA Is Required for Efficient Bacterial Flagellar Protein Export , 2012, Journal of bacteriology.

[14]  K. Namba,et al.  Functional defect and restoration of temperature-sensitive mutants of FlhA, a subunit of the flagellar protein export apparatus. , 2012, Journal of molecular biology.

[15]  K. Namba,et al.  Interaction of a bacterial flagellar chaperone FlgN with FlhA is required for efficient export of its cognate substrates , 2012, Molecular microbiology.

[16]  K. Namba,et al.  Interaction between FliI ATPase and a flagellar chaperone FliT during bacterial flagellar protein export , 2012, Molecular microbiology.

[17]  Yusuke V. Morimoto,et al.  An energy transduction mechanism used in bacterial flagellar type III protein export , 2011, Nature communications.

[18]  Jared R. Leadbetter,et al.  Structural diversity of bacterial flagellar motors , 2011, The EMBO journal.

[19]  K. Namba,et al.  Genetic Characterization of Conserved Charged Residues in the Bacterial Flagellar Type III Export Protein FlhA , 2011, PloS one.

[20]  O. Nureki,et al.  Structure and function of a membrane component SecDF that enhances protein export , 2011, Nature.

[21]  K. Namba,et al.  Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases , 2011, Nature Structural &Molecular Biology.

[22]  Yusuke V. Morimoto,et al.  Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor , 2010, Molecular microbiology.

[23]  Nico Kümmerer,et al.  FlhA provides the adaptor for coordinated delivery of late flagella building blocks to the type III secretion system , 2010, Proceedings of the National Academy of Sciences.

[24]  K. Namba,et al.  Structural insight into the regulatory mechanisms of interactions of the flagellar type III chaperone FliT with its binding partners , 2010, Proceedings of the National Academy of Sciences.

[25]  Katsumi Imada,et al.  Structure of the cytoplasmic domain of FlhA and implication for flagellar type III protein export , 2010, Molecular microbiology.

[26]  K. Namba,et al.  Role of the C-Terminal Cytoplasmic Domain of FlhA in Bacterial Flagellar Type III Protein Export , 2010, Journal of bacteriology.

[27]  Yusuke V. Morimoto,et al.  Roles of the extreme N‐terminal region of FliH for efficient localization of the FliH–FliI complex to the bacterial flagellar type III export apparatus , 2009, Molecular microbiology.

[28]  K. Namba,et al.  Mechanisms of type III protein export for bacterial flagellar assembly. , 2008, Molecular bioSystems.

[29]  Hiroaki Kitano,et al.  Biological robustness , 2008, Nature Reviews Genetics.

[30]  K. Hughes,et al.  Coordinating assembly of a bacterial macromolecular machine , 2008, Nature Reviews Microbiology.

[31]  K. Hughes,et al.  Energy source of flagellar type III secretion , 2008, Nature.

[32]  K. Namba,et al.  Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export , 2008, Nature.

[33]  K. Namba,et al.  Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits , 2007, Proceedings of the National Academy of Sciences.

[34]  G. Cornelis,et al.  The type III secretion injectisome , 2006, Nature Reviews Microbiology.

[35]  Christopher M. Bailey,et al.  Evolutionary links between FliH/YscL‐like proteins from bacterial type III secretion systems and second‐stalk components of the FoF1 and vacuolar ATPases , 2006, Protein science : a publication of the Protein Society.

[36]  R. Macnab,et al.  Structural and functional analysis of the C-terminal cytoplasmic domain of FlhA, an integral membrane component of the type III flagellar protein export apparatus in Salmonella. , 2004, Journal of molecular biology.

[37]  C. Hughes,et al.  Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Macnab,et al.  How bacteria assemble flagella. , 2003, Annual review of microbiology.

[39]  R. Macnab,et al.  The ATPase FliI Can Interact with the Type III Flagellar Protein Export Apparatus in the Absence of Its Regulator, FliH , 2003, Journal of bacteriology.

[40]  R. Macnab,et al.  Molecular dissection of Salmonella FliH, a regulator of the ATPase FliI and the type III flagellar protein export pathway , 2002, Molecular microbiology.

[41]  K. Namba,et al.  Interactions between bacterial flagellar axial proteins in their monomeric state in solution. , 2002, Journal of molecular biology.

[42]  R. Macnab,et al.  Intergenic Suppression between the Flagellar MS Ring Protein FliF of Salmonella and FlhA, a Membrane Component of Its Export Apparatus , 2001, Journal of bacteriology.

[43]  R. Macnab,et al.  FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity , 2000, Molecular microbiology.

[44]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  R. Macnab,et al.  Interactions among components of the Salmonella flagellar export apparatus and its substrates , 2000, Molecular microbiology.

[46]  R. Macnab,et al.  Components of the Salmonella Flagellar Export Apparatus and Classification of Export Substrates , 1999, Journal of bacteriology.

[47]  R. Macnab,et al.  The FliO, FliP, FliQ, and FliR proteins of Salmonella typhimurium: putative components for flagellar assembly , 1997, Journal of bacteriology.

[48]  K. Kutsukake,et al.  Molecular dissection of the flagellum-specific anti-sigma factor, FlgM, of Salmonella typhimurium , 1995, Molecular and General Genetics MGG.

[49]  T. Minamino,et al.  Molecular characterization of the Salmonella typhimurium flhB operon and its protein products , 1994, Journal of bacteriology.

[50]  K. Kutsukake,et al.  Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium , 1994, Journal of Bacteriology.

[51]  R. Macnab,et al.  FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium , 1994, Journal of bacteriology.

[52]  K. Ohnishi,et al.  A novel transcriptional regulation mechanism in the flagellar regulon of Salmonella typhimurium: an anti‐sigma factor inhibits the activity of the flagellum‐specific Sigma factor, σF , 1992, Molecular microbiology.

[53]  K. Hughes,et al.  Molecular characterization of flgM, a gene encoding a negative regulator of flagellin synthesis in Salmonella typhimurium , 1991, Journal of bacteriology.

[54]  F. de la Cruz,et al.  Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. , 1991, Gene.

[55]  R. Macnab,et al.  Genetic evidence for a switching and energy-transducing complex in the flagellar motor of Salmonella typhimurium , 1986, Journal of bacteriology.

[56]  H. Fujita,et al.  Genetic analysis of H2, the structural gene for phase-2 flagellin in Salmonella. , 1975, Journal of general microbiology.

[57]  I. A,et al.  Genetic Analysis of H 2 , the Structural Gene for Phase-2 Flagellin in Salmonella , 1984 .