Nuclear Power Plant Components Condition Monitoring by Probabilistic Support Vector Machine

In this paper, an approach for the prediction of the condition of Nuclear Power Plant (NPP) components is proposed, for the purposes of condition monitoring. It builds on a modified version of the Probabilistic Support Vector Regression (PSVR) method, which is based on the Bayesian probabilistic paradigm with a Gaussian prior. Specific techniques are introduced for the tuning of the PSVR hyerparameters, the model identification and the uncertainty analysis. A real case study is considered, regarding the prediction of a drifting process parameter of a NPP component.

[1]  Omar E. Elnokity,et al.  ANN based Sensor Faults Detection, Isolation, and Reading Estimates – SFDIRE: Applied in a nuclear process , 2012 .

[2]  Elias Masry,et al.  Local linear regression estimation for time series with long-range dependence , 1999 .

[3]  Rafael Castro-Linares,et al.  Trajectory tracking for non-holonomic cars: A linear approach to controlled leader-follower formation , 2010, 49th IEEE Conference on Decision and Control (CDC).

[4]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[5]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[6]  Sami Ekici,et al.  Support Vector Machines for classification and locating faults on transmission lines , 2012, Appl. Soft Comput..

[7]  Robert A. Lordo,et al.  Learning from Data: Concepts, Theory, and Methods , 2001, Technometrics.

[8]  Yi-Guang Li,et al.  Gas turbine performance prognostic for condition-based maintenance , 2009 .

[9]  Yu-Chi Ho,et al.  Simple Explanation of the No Free Lunch Theorem of Optimization , 2001 .

[10]  Junbin Gao,et al.  A Probabilistic Framework for SVM Regression and Error Bar Estimation , 2002, Machine Learning.

[11]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[12]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[13]  NiuGang,et al.  Intelligent condition monitoring and prognostics system based on data-fusion strategy , 2010 .

[14]  Jin Jiang,et al.  Applications of fault detection and diagnosis methods in nuclear power plants: A review , 2011 .

[15]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[16]  J. Rodgers,et al.  Thirteen ways to look at the correlation coefficient , 1988 .

[17]  G. van Schoor,et al.  Fault diagnosis of generation IV nuclear HTGR components – Part I: The error enthalpy–entropy graph approach , 2012 .

[18]  Daming Lin,et al.  A review on machinery diagnostics and prognostics implementing condition-based maintenance , 2006 .

[19]  Seifedine Kadry Diagnostics and Prognostics of Engineering Systems: Methods and Techniques , 2012 .

[20]  Krešimir Trontl,et al.  Support vector regression model for the estimation of γ -ray buildup factors for multi-layer shields , 2007 .

[21]  Jiejin Cai,et al.  Applying support vector machine to predict the critical heat flux in concentric-tube open thermosiphon , 2012 .

[22]  Vladimir Cherkassky,et al.  Learning from Data: Concepts, Theory, and Methods , 1998 .

[23]  A. Srivastava,et al.  Diagnostic system for identification of accident scenarios in nuclear power plants using artificial neural networks , 2009, Reliab. Eng. Syst. Saf..

[24]  Man Gyun Na,et al.  Estimation of collapse moment for the wall-thinned pipe bends using fuzzy model identification , 2006 .

[25]  Tomaso A. Poggio,et al.  A Sparse Representation for Function Approximation , 1998, Neural Computation.

[26]  Man Gyun Na,et al.  UNCERTAINTY ANALYSIS OF DATA-BASED MODELS FOR ESTIMATING COLLAPSE MOMENTS OF WALL-THINNED PIPE BENDS AND ELBOWS , 2012 .

[27]  Enrico Zio,et al.  A data-driven approach for predicting failure scenarios in nuclear systems , 2010 .

[28]  Venkat Venkatasubramanian,et al.  Prognostic and diagnostic monitoring of complex systems for product lifecycle management: Challenges and opportunities , 2005, Comput. Chem. Eng..

[29]  Alexander J. Smola,et al.  Support Vector Regression Machines , 1996, NIPS.

[30]  V. Sugumaran,et al.  A comparative study of Naïve Bayes classifier and Bayes net classifier for fault diagnosis of monoblock centrifugal pump using wavelet analysis , 2012, Appl. Soft Comput..

[31]  Enrico Zio,et al.  Genetic algorithm-based wrapper approach for grouping condition monitoring signals of nuclear power plant components , 2011, Integr. Comput. Aided Eng..

[32]  Man Gyun Na,et al.  Calculation of the power peaking factor in a nuclear reactor using support vector regression models , 2008 .

[33]  S. Amari,et al.  Network Information Criterion | Determining the Number of Hidden Units for an Articial Neural Network Model Network Information Criterion | Determining the Number of Hidden Units for an Articial Neural Network Model , 2007 .

[34]  Alexander J. Smola,et al.  Support Vector Method for Function Approximation, Regression Estimation and Signal Processing , 1996, NIPS.

[35]  Enrico Zio,et al.  Signal Grouping for Condition Monitoring of Nuclear Power Plant Components , 2010 .

[36]  Enrico Zio,et al.  A fuzzy decision tree method for fault classification in the steam generator of a pressurized water reactor , 2009 .

[37]  Rahmat Shoureshi,et al.  Neural networks for system identification , 1989, IEEE Control Systems Magazine.

[38]  D. Roverso,et al.  On-Line Fault Recognition System for the Analogic Channels of VVER 1000/400 Nuclear Reactors , 2012, IEEE Transactions on Nuclear Science.

[39]  Won-Tae Hwang,et al.  Hybrid modeling approach to improve the forecasting capability for the gaseous radionuclide in a nuclear site , 2012 .

[40]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[41]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[42]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[43]  Peter Sollich Probabilistic interpretations and Bayesian methods for support vector machines , 1999 .

[44]  Christopher K. I. Williams Computing with Infinite Networks , 1996, NIPS.

[45]  Federico Girosi,et al.  An Equivalence Between Sparse Approximation and Support Vector Machines , 1998, Neural Computation.

[46]  Enrico Zio,et al.  A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system , 2010, Reliab. Eng. Syst. Saf..

[47]  Lennart Ljung,et al.  Neural Networks in System Identification , 1994 .

[48]  G. van Schoor,et al.  Fault diagnosis of generation IV nuclear HTGR components – Part II: The area error enthalpy–entropy graph approach , 2012 .

[49]  M. Farid Golnaraghi,et al.  Prognosis of machine health condition using neuro-fuzzy systems , 2004 .

[50]  E. Zio,et al.  Neuro-fuzzy pattern classification for fault diagnosis in nuclear components , 2006 .

[51]  Belle R. Upadhyaya,et al.  Monitoring and fault diagnosis of the steam generator system of a nuclear power plant using data-driven modeling and residual space analysis , 2005 .

[52]  Chih-Jen Lin,et al.  Simple Probabilistic Predictions for Support Vector Regression , 2004 .

[53]  B. R. Upadhyaya,et al.  Fault Diagnosis of Helical Coil Steam Generator Systems of an Integral Pressurized Water Reactor Using Optimal Sensor Selection , 2012, IEEE Transactions on Nuclear Science.

[54]  H. Akaike A new look at the statistical model identification , 1974 .