Log-Infinitely Divisible Multifractal Processes

Abstract: We define a large class of multifractal random measures and processes with arbitrary log-infinitely divisible exact or asymptotic scaling law. These processes generalize within a unified framework both the recently defined log-normal Multifractal Random Walk processes (MRW) [33, 3] and the log-Poisson ``product of cylindrical pulses'' [7]. Their construction involves some ``continuous stochastic multiplication'' [36] from coarse to fine scales. They are obtained as limit processes when the finest scale goes to zero. We prove the existence of these limits and we study their main statistical properties including non-degeneracy, convergence of the moments and multifractal scaling.

[1]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[2]  P. Libby The Scientific American , 1881, Nature.

[3]  William Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. 2 , 1967 .

[4]  Howard M. Taylor,et al.  On the Distribution of Stock Price Differences , 1967, Oper. Res..

[5]  B. Mandelbrot Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence , 1972 .

[6]  J. Kahane,et al.  Sur certaines martingales de Benoit Mandelbrot , 1976 .

[7]  U. Frisch FULLY DEVELOPED TURBULENCE AND INTERMITTENCY , 1980 .

[8]  R. Durrett,et al.  Fixed points of the smoothing transformation , 1983 .

[9]  J. Kahane Sur le chaos multiplicatif , 1985 .

[10]  M. Brelot Classical potential theory and its probabilistic counterpart , 1986 .

[11]  Y. Guivarc’h Remarques sur les solutions d'une équation fonctionnelle non linéaire de Benoît Mandelbrot , 1987 .

[12]  B. Rajput,et al.  Spectral representations of infinitely divisible processes , 1989 .

[13]  E. Bacry,et al.  Wavelets and multifractal formalism for singular signals: Application to turbulence data. , 1991, Physical review letters.

[14]  Schmitt,et al.  Empirical determination of universal multifractal exponents in turbulent velocity fields. , 1992, Physical review letters.

[15]  Edward C. Waymire,et al.  Multifractal Dimensions and Scaling Exponents for Strongly Bounded Random Cascades , 1992 .

[16]  E. Bacry,et al.  Singularity spectrum of fractal signals from wavelet analysis: Exact results , 1993 .

[17]  E. Bacry,et al.  The Multifractal Formalism Revisited with Wavelets , 1994 .

[18]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[19]  She,et al.  Universal scaling laws in fully developed turbulence. , 1994, Physical review letters.

[20]  G. M. Molchan,et al.  Scaling exponents and multifractal dimensions for independent random cascades , 1996 .

[21]  Stéphane Jaffard,et al.  Multifractal formalism for functions part II: self-similar functions , 1997 .

[22]  Stéphane Jaffard,et al.  Multifractal formalism for functions part I: results valid for all functions , 1997 .

[23]  Emmanuel Bacry,et al.  Random cascades on wavelet dyadic trees , 1998 .

[24]  B. Mandelbrot A Multifractal Walk down Wall Street , 1999 .

[25]  Julien Barral Moments, continuité, et analyse multifractale des martingales de Mandelbrot , 1999 .

[26]  S. Jaffard The multifractal nature of Lévy processes , 1999 .

[27]  J. Barral Continuity of the Multifractal Spectrum of a Random Statistically Self-Similar Measure , 2000 .

[28]  E. Bacry,et al.  Modelling fluctuations of financial time series: from cascade process to stochastic volatility model , 2000, cond-mat/0005400.

[29]  J. Delour,et al.  2 00 0 Modelling fluctuations of financial time series : from cascade process to stochastic volatility model , 2000 .

[30]  R. Wolpert Lévy Processes , 2000 .

[31]  F. Schmitt,et al.  Stochastic equations generating continuous multiplicative cascades , 2001, cond-mat/0102346.

[32]  B. Mandelbrot,et al.  Multifractal products of cylindrical pulses , 2002 .

[33]  E. Bacry,et al.  Multifractal random walk. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Emmanuel Bacry,et al.  Modelling financial time series using multifractal random walks , 2001 .

[35]  E. Bacry,et al.  Multifractal stationary random measures and multifractal random walks with log infinitely divisible scaling laws. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  B. Mandelbrot Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier , 2004 .