Log-Infinitely Divisible Multifractal Processes
暂无分享,去创建一个
[1] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[2] P. Libby. The Scientific American , 1881, Nature.
[3] William Feller,et al. An Introduction to Probability Theory and Its Applications, Vol. 2 , 1967 .
[4] Howard M. Taylor,et al. On the Distribution of Stock Price Differences , 1967, Oper. Res..
[5] B. Mandelbrot. Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence , 1972 .
[6] J. Kahane,et al. Sur certaines martingales de Benoit Mandelbrot , 1976 .
[7] U. Frisch. FULLY DEVELOPED TURBULENCE AND INTERMITTENCY , 1980 .
[8] R. Durrett,et al. Fixed points of the smoothing transformation , 1983 .
[9] J. Kahane. Sur le chaos multiplicatif , 1985 .
[10] M. Brelot. Classical potential theory and its probabilistic counterpart , 1986 .
[11] Y. Guivarc’h. Remarques sur les solutions d'une équation fonctionnelle non linéaire de Benoît Mandelbrot , 1987 .
[12] B. Rajput,et al. Spectral representations of infinitely divisible processes , 1989 .
[13] E. Bacry,et al. Wavelets and multifractal formalism for singular signals: Application to turbulence data. , 1991, Physical review letters.
[14] Schmitt,et al. Empirical determination of universal multifractal exponents in turbulent velocity fields. , 1992, Physical review letters.
[15] Edward C. Waymire,et al. Multifractal Dimensions and Scaling Exponents for Strongly Bounded Random Cascades , 1992 .
[16] E. Bacry,et al. Singularity spectrum of fractal signals from wavelet analysis: Exact results , 1993 .
[17] E. Bacry,et al. The Multifractal Formalism Revisited with Wavelets , 1994 .
[18] D. Applebaum. Stable non-Gaussian random processes , 1995, The Mathematical Gazette.
[19] She,et al. Universal scaling laws in fully developed turbulence. , 1994, Physical review letters.
[20] G. M. Molchan,et al. Scaling exponents and multifractal dimensions for independent random cascades , 1996 .
[21] Stéphane Jaffard,et al. Multifractal formalism for functions part II: self-similar functions , 1997 .
[22] Stéphane Jaffard,et al. Multifractal formalism for functions part I: results valid for all functions , 1997 .
[23] Emmanuel Bacry,et al. Random cascades on wavelet dyadic trees , 1998 .
[24] B. Mandelbrot. A Multifractal Walk down Wall Street , 1999 .
[25] Julien Barral. Moments, continuité, et analyse multifractale des martingales de Mandelbrot , 1999 .
[26] S. Jaffard. The multifractal nature of Lévy processes , 1999 .
[27] J. Barral. Continuity of the Multifractal Spectrum of a Random Statistically Self-Similar Measure , 2000 .
[28] E. Bacry,et al. Modelling fluctuations of financial time series: from cascade process to stochastic volatility model , 2000, cond-mat/0005400.
[29] J. Delour,et al. 2 00 0 Modelling fluctuations of financial time series : from cascade process to stochastic volatility model , 2000 .
[30] R. Wolpert. Lévy Processes , 2000 .
[31] F. Schmitt,et al. Stochastic equations generating continuous multiplicative cascades , 2001, cond-mat/0102346.
[32] B. Mandelbrot,et al. Multifractal products of cylindrical pulses , 2002 .
[33] E. Bacry,et al. Multifractal random walk. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.
[34] Emmanuel Bacry,et al. Modelling financial time series using multifractal random walks , 2001 .
[35] E. Bacry,et al. Multifractal stationary random measures and multifractal random walks with log infinitely divisible scaling laws. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[36] B. Mandelbrot. Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier , 2004 .