Record-Efficiency n-Type and High-Efficiency p-Type Monolike Silicon Heterojunction Solar Cells with a High-Temperature Gettering Process

We report independently confirmed 22.15% and record 22.58% power conversion efficiencies for thin (130–140 μm) p-type and n-type monolike Si solar cells, respectively. We comparatively assessed advanced n-type and p-type monolike silicon wafers for potential use in low-cost, high-efficiency solar cell applications by using phosphorus diffusion gettering for material-quality improvement and silicon heterojunction solar cell fabrication for assessment of performance in high-efficiency photovoltaic device architecture. We show that gettering improves material quality and device properties significantly, depending on the type of doping (n-type or p-type), wafer position in the ingot, drive-in temperature, and cooling profile. Owing to the high open circuit voltage (725 mV), the record n-type solar cell also represents the highest reported solar cell efficiency for cast silicon to date.

[1]  B. Lai,et al.  Improved iron gettering of contaminated multicrystalline silicon by high temperature phosphorus diffusion , 2013 .

[2]  S. Kurinec,et al.  Emergence of Continuous Czochralski (CCZ) Growth for Monocrystalline Silicon Photovoltaics , 2018, Emerging Photovoltaic Materials.

[3]  A. Schlachetzki,et al.  Doping Profile Analysis in Si by Electrochemical Capacitance‐Voltage Measurements , 1995 .

[4]  Deren Yang,et al.  Higher quality mono-like cast silicon with induced grain boundaries , 2015 .

[5]  T. Ravi,et al.  Heterojunction solar cells with 23% efficiency on n‐type epitaxial kerfless silicon wafers , 2016 .

[6]  T. Ravi,et al.  High efficiency heterojunction solar cells on n-type kerfless mono crystalline silicon wafers by epitaxial growth , 2015 .

[7]  J. Friedrich,et al.  Defect formation induced by seed-joints during directional solidification of quasi-mono-crystalline silicon ingots , 2014 .

[8]  H. Savin,et al.  Electronic Quality Improvement of Highly Defective Quasi‐Mono Silicon Material by Phosphorus Diffusion Gettering , 2017 .

[9]  Nathan Stoddard,et al.  Casting Single Crystal Silicon: Novel Defect Profiles from BP Solar's Mono2 TM Wafers , 2007 .

[10]  C. Cañizo,et al.  About the origin of low wafer performance and crystal defect generation on seed‐cast growth of industrial mono‐like silicon ingots , 2014 .

[11]  T. Buonassisi,et al.  Dislocation formation in seeds for quasi-monocrystalline silicon for solar cells , 2014 .

[12]  M. Schubert,et al.  High performance multicrystalline silicon: Grain structure and iron precipitation , 2017 .

[13]  B. Lai,et al.  Engineering metal-impurity nanodefects for low-cost solar cells , 2005, Nature materials.

[14]  D. Macdonald,et al.  Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon , 2004 .

[15]  E. Weber,et al.  Electrical properties and recombination activity of copper, nickel and cobalt in silicon , 1998 .

[16]  Martin A. Green,et al.  Solar cell efficiency tables (Version 53) , 2018, Progress in Photovoltaics: Research and Applications.

[17]  Chung-Wen Lan,et al.  Development of high‐performance multicrystalline silicon for photovoltaic industry , 2015 .

[18]  Thorsten Trupke,et al.  Photoluminescence Imaging for Photovoltaic Applications , 2012 .

[19]  M. Yang,et al.  The emergence of high-performance multi-crystalline silicon in photovoltaics , 2017 .

[20]  D. Muñoz,et al.  Advanced process for n-type mono-like silicon a-Si:H/c-Si heterojunction solar cells with 21.5% efficiency , 2014 .

[21]  G. Stokkan,et al.  Growth of dislocation clusters during directional solidification of multicrystalline silicon ingots , 2011 .

[22]  R. Sinton,et al.  Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data , 1996 .

[23]  C. Lan,et al.  Effect of Seed Arrangements on the Quality of n-Type Monolike Silicon Grown by Directional Solidification , 2016 .

[24]  M. Schubert,et al.  Photoluminescence imaging of silicon wafers , 2006 .

[25]  C. Lan,et al.  Control of ingot quality and solar cell appearance of cast mono-like silicon by using seed partitions , 2017 .

[26]  S. Wenham,et al.  Defect passivation on cast-mono crystalline screen-printed cells , 2017 .

[27]  Patricia X. T. Yen,et al.  Synchrotron-based investigation of transition-metal getterability in n-type multicrystalline silicon , 2016 .

[28]  Tonio Buonassisi,et al.  Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs , 2012 .

[29]  B. Lai,et al.  Precipitated iron: A limit on gettering efficacy in multicrystalline silicon , 2013 .

[30]  H. Lignier,et al.  Improved multicrystalline silicon ingot crystal quality through seed growth for high efficiency solar cells , 2012 .

[31]  K. Kutsukake Growth of Crystalline Silicon for Solar Cells: Mono-Like Method , 2019, Handbook of Photovoltaic Silicon.

[32]  S. Wenham,et al.  The role of hydrogenation and gettering in enhancing the efficiency of next‐generation Si solar cells: An industrial perspective , 2017 .

[33]  H. Savin,et al.  Recombination activity of light-activated copper defects in p-type silicon studied by injection- and temperature-dependent lifetime spectroscopy , 2016 .

[34]  Dong Wang,et al.  Seed-assisted cast quasi-single crystalline silicon for photovoltaic application: Towards high efficiency and low cost silicon solar cells , 2012 .

[35]  Chung-Wen Lan,et al.  Grain control in directional solidification of photovoltaic silicon , 2012 .