Noninterferometric phase retrieval using a fractional Fourier system.

The signal extraction method based on intensity measurements in two close fractional Fourier domains is examined by using the phase space formalism. The fractional order separation has a lower bound and an upper bound that depend on the signal at hand and the noise in the optical system used for measurement. On the basis of a theoretical analysis, it is shown that for a given optical system a judicious choice of fractional order separation requires some a priori knowledge of the signal bandwidth. We also present some experimental results in support of the analysis.

[1]  M. Teague Deterministic phase retrieval: a Green’s function solution , 1983 .

[2]  M. Teague,et al.  Image formation in terms of the transport equation , 1984 .

[3]  N. Streibl Phase imaging by the transport equation of intensity , 1984 .

[4]  A. Lohmann,et al.  Phase retrieval based on the irradiance transport equation and the Fourier transform method: experiments. , 1988, Applied optics.

[5]  F. Roddier,et al.  Wavefront sensing and the irradiance transport equation. , 1990, Applied optics.

[6]  A. Lohmann,et al.  RELATIONSHIPS BETWEEN THE RADON-WIGNER AND FRACTIONAL FOURIER TRANSFORMS , 1994 .

[7]  Beck,et al.  Complex wave-field reconstruction using phase-space tomography. , 1994, Physical review letters.

[8]  K. Nugent,et al.  Partially coherent fields, the transport-of-intensity equation, and phase uniqueness , 1995 .

[9]  D. F. McAlister,et al.  Optical phase retrieval by phase-space tomography and fractional-order Fourier transforms. , 1995, Optics letters.

[10]  Zeev Zalevsky,et al.  Space–bandwidth product of optical signals and systems , 1996 .

[11]  Mj Martin Bastiaans Application of the Wigner distribution function in optics , 1997 .

[12]  S. Tamura,et al.  WAVE FIELD DETERMINATION USING TOMOGRAPHY OF THE AMBIGUITY FUNCTION , 1997 .

[13]  Shinichi Tamura,et al.  Analytic relation for recovering the mutual intensity by means of intensity information , 1998 .

[14]  K. Nugent,et al.  Noninterferometric phase imaging with partially coherent light , 1998 .

[15]  K. Nugent,et al.  Quantitative optical phase microscopy. , 1998, Optics letters.

[16]  Ram Mohan Vasu,et al.  Non-interferometric methods of phase estimation for application in optical tomography , 1999 .

[17]  R M Vasu,et al.  Optical tomographic microscope for quantitative imaging of phase objects. , 2000, Applied optics.

[18]  Martin J. Bastiaans,et al.  On fractional Fourier transform moments , 2000, IEEE Signal Processing Letters.

[19]  M. Bastiaans,et al.  Phase-space distributions in quasi-polar coordinates and the fractional Fourier transform. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  J. Sheridan,et al.  Holographic interferometry and the fractional Fourier transformation. , 2000, Optics letters.

[21]  L. Z. Cai,et al.  Optical implementation of scale invariant fractional Fourier transform of continuously variable orders with a two-lens system , 2002 .

[22]  Bryan Hennelly,et al.  Motion detection, the Wigner distribution function, and the optical fractional Fourier transform. , 2003, Optics letters.

[23]  Ljubisa Stankovic,et al.  Signal reconstruction from two close fractional Fourier power spectra , 2003, IEEE Trans. Signal Process..

[24]  Daniela Dragoman Redundancy of phase-space distribution functions in complex field recovery problems. , 2003, Applied optics.

[25]  Markus Testorf,et al.  Phase-space interpretation of deterministic phase retrieval. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  John T. Sheridan,et al.  Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[27]  Unnikrishnan Gopinathan,et al.  Paraxial speckle-based metrology systems with an aperture. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  Keith A Nugent,et al.  X-ray noninterferometric phase imaging: a unified picture. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.