Global Well-Posedness Issues for the Inviscid Boussinesq System with Yudovich’s Type Data

The present paper is dedicated to the study of the global existence for the inviscid two-dimensional Boussinesq system. We focus on finite energy data with bounded vorticity and we find out that, under quite a natural additional assumption on the initial temperature, there exists a global unique solution. No smallness conditions are imposed on the data. The global existence issues for infinite energy initial velocity, and for the Bénard system are also discussed.

[1]  Dongho Chae,et al.  Global regularity for the 2D Boussinesq equations with partial viscosity terms , 2006 .

[2]  A. Ambrosetti,et al.  A primer of nonlinear analysis , 1993 .

[3]  J. Chemin,et al.  Théorèmes d’unicité pour le système de navier-stokes tridimensionnel , 1999 .

[4]  PL embeddings ofPL manifolds into some Euclidean spaces , 1989 .

[5]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[6]  J. Chemin,et al.  Fluides parfaits incompressibles , 2018, Astérisque.

[7]  Renzo L. Ricca,et al.  An introduction to the geometry and topology of fluid flows , 2001 .

[8]  Taoufik Hmidi,et al.  On the global well-posedness of the Boussinesq system with zero viscosity , 2007, 0711.3198.

[9]  H. K. Moffatt,et al.  Some Remarks on Topological Fluid Mechanics , 2001 .

[10]  E Weinan,et al.  Small‐scale structures in Boussinesq convection , 1998 .

[11]  木村 竜治,et al.  J. Pedlosky: Geophysical Fluid Dynamics, Springer-Verlag, New York and Heidelberg, 1979, xii+624ページ, 23.5×15.5cm, $39.8. , 1981 .

[12]  M. Vishik,et al.  Hydrodynamics in Besov Spaces , 1998 .

[13]  J. Holton Geophysical fluid dynamics. , 1983, Science.

[14]  R. Danchin,et al.  Les theoremes de Leray et de Fujita-Kato pour le systeme de Boussinesq partiellement visqueux. The Leray and Fujita-Kato theorems for the Boussinesq system with partial viscosity , 2008, 0806.4083.

[15]  J. R. Cannon,et al.  The initial value problem for the Boussinesq equations with data in Lp , 1980 .

[16]  P. Gérard Résultats récents sur les fluides parfaits incompressibles bidimensionnels [d'après J.-Y. Chemin et J.-M. Delort) , 1992 .

[17]  B. Guo Spectral method for solving two-dimensional Newton-Boussinesq equations , 1989 .

[18]  Bulletin de la Société Mathématique de France , 2022 .