Littlewood Polynomials with Small $L^4$ Norm

Littlewood asked how small the ratio $||f||_4/||f||_2$ (where $||.||_\alpha$ denotes the $L^\alpha$ norm on the unit circle) can be for polynomials $f$ having all coefficients in $\{1,-1\}$, as the degree tends to infinity. Since 1988, the least known asymptotic value of this ratio has been $\sqrt[4]{7/6}$, which was conjectured to be minimum. We disprove this conjecture by showing that there is a sequence of such polynomials, derived from the Fekete polynomials, for which the limit of this ratio is less than $\sqrt[4]{22/19}$.

[1]  J. Beck Flat Polynomials on the unit Circle—Note on a Problem of Littlewood , 1991 .

[2]  Jonathan Jedwab,et al.  The merit factor of binary sequence families constructed from m-sequences , 2009 .

[3]  H. Shapiro,et al.  Extremal problems for polynomials and power series , 1951 .

[4]  A. Weil On Some Exponential Sums. , 1948, Proceedings of the National Academy of Sciences of the United States of America.

[5]  D. Newman,et al.  The L 4 norm of a polynomial with coefficients , 1990 .

[6]  D. J. Newman Norms of Polynomials , 1960 .

[7]  G. Pólya,et al.  Verschiedene Bemerkungen zur Zahlentheorie. , 1919 .

[8]  A. B. Cook Some unsolved problems. , 1952, Hospital management.

[9]  P. Borwein,et al.  Merit Factors of Polynomials Formed by Jacobi Symbols , 2001, Canadian Journal of Mathematics.

[10]  Kwok-Kwong Stephen Choi,et al.  Explicit merit factor formulae for Fekete and Turyn polynomials , 2001 .

[11]  Tom Høholdt,et al.  Binary Sequences with Good Correlation Properties , 1987, AAECC.

[12]  H. Davenport Multiplicative Number Theory , 1967 .

[13]  Hugh L. Montgomery,et al.  Multiplicative Number Theory I: Classical Theory , 2006 .

[14]  Tom Høholdt,et al.  Determination of the merit factor of Legendre sequences , 1988, IEEE Trans. Inf. Theory.

[15]  Tom Høholdt,et al.  The Merit Factor Problem for Binary Sequences , 2006, AAECC.

[16]  D. V. Sarwate,et al.  Mean-square correlation of shift-register sequences , 1984 .

[17]  J. E. Littlewood,et al.  On Polynomials ∑ ±nzm,∑ eαminzm,z=e0i , 1966 .

[18]  Tom Høholdt,et al.  The merit factor of binary sequences related to difference sets , 1991, IEEE Trans. Inf. Theory.

[19]  Bruce C. Berndt,et al.  The determination of Gauss sums , 1981 .

[20]  Walter Rudin,et al.  Some theorems on Fourier coefficients , 1959 .

[21]  Ganesh Narayanaswamy,et al.  Construction of New Asymptotic Classes of Binary Sequences Based on Existing Asymptotic Classes , 1999 .

[22]  Roger C. Baker,et al.  Oscillations of Quadratic L-Functions , 1990 .

[23]  P. Borwein,et al.  An extremal property of Fekete polynomials , 2000 .

[24]  J. Kahane Sur Les Polynomes a Coefficients Unimodulaires , 1980 .

[25]  Andrew Granville,et al.  Zeros of Fekete polynomials , 1999 .

[26]  Peter Borwein,et al.  Computational Excursions in Analysis and Number Theory , 2002 .

[27]  M. Fekete,et al.  Über ein problem von laguerre , 1912 .

[28]  R. Lockhart,et al.  The expected _{} norm of random polynomials , 2000 .

[29]  K. F. Gauss,et al.  Summatio quarumdam serierum singularium , 1808 .

[30]  Matthew G. Parker,et al.  Two binary sequence families with large merit factor , 2009, Adv. Math. Commun..

[31]  Kwok-Kwong Stephen Choi,et al.  Merit Factors of Character Polynomials , 2000 .

[32]  Dilip V. Sarwate An upper bound on the aperiodic autocorrelation function for a maximal-length sequence , 1984, IEEE Trans. Inf. Theory.

[33]  Marcel J. E. Golay The merit factor of Legendre sequences , 1983, IEEE Trans. Inf. Theory.

[34]  Marcel J. E. Golay,et al.  The merit factor of long low autocorrelation binary sequences , 1982, IEEE Trans. Inf. Theory.

[35]  P. Erdos Some unsolved problems. , 1957 .

[36]  Peter B. Borwein,et al.  Binary sequences with merit factor greater than 6.34 , 2004, IEEE Transactions on Information Theory.

[37]  H. Montgomery An exponential polynomial formed with the Legendre symbol , 1980 .

[38]  R. Lockhart,et al.  THE EXPECTED Lp NORM OF RANDOM POLYNOMIALS , 2001 .

[39]  Paul Erdös,et al.  An inequality for the maximum of trigonometric polynomials , 1962 .

[40]  J. Littlewood Some problems in real and complex analysis , 1968 .