Optimal portfolio selection with consumption and nonlinear integro-differential equations with gradient constraint: A viscosity solution approach

Abstract. We study a problem of optimal consumption and portfolio selection in a market where the logreturns of the uncertain assets are not necessarily normally distributed. The natural models then involve pure-jump Lévy processes as driving noise instead of Brownian motion like in the Black and Scholes model. The state constrained optimization problem involves the notion of local substitution and is of singular type. The associated Hamilton-Jacobi-Bellman equation is a nonlinear first order integro-differential equation subject to gradient and state constraints. We characterize the value function of the singular stochastic control problem as the unique constrained viscosity solution of the associated Hamilton-Jacobi-Bellman equation. This characterization is obtained in two main steps. First, we prove that the value function is a constrained viscosity solution of an integro-differential variational inequality. Second, to ensure that the characterization of the value function is unique, we prove a new comparison (uniqueness) result for the state constraint problem for a class of integro-differential variational inequalities. In the case of HARA utility, it is possible to determine an explicit solution of our portfolio-consumption problem when the Lévy process posseses only negative jumps. This is, however, the topic of a companion paper [7].

[1]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[2]  P. Lions,et al.  Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints , 1989 .

[3]  A singular stochastic control problem in an unbounded domain , 1994 .

[4]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[5]  Onésimo Hernández-Lerma,et al.  Controlled Markov Processes , 1965 .

[6]  Olivier Alvarez,et al.  Viscosity solutions of nonlinear integro-differential equations , 1996 .

[7]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[8]  H. Soner Optimal Control of Jump-Markov Processes and Viscosity Solutions , 1988 .

[9]  H. Ishii On uniqueness and existence of viscosity solutions of fully nonlinear second‐order elliptic PDE's , 1989 .

[10]  R. Jensen The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations , 1988 .

[11]  P. Lions Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, Part I , 1983 .

[12]  Kenneth H. Karlsen,et al.  Optimal portfolio management rules in a non-Gaussian market with durability and intertemporal substitution , 2001, Finance Stochastics.

[13]  R. Jensen Uniqueness criteria for viscosity solutions of fully nonlinear elliptic partial differential equations , 1989 .

[14]  Mark H. A. Davis,et al.  European option pricing with transaction costs , 1993 .

[15]  M. Crandall Viscosity solutions: A primer , 1997 .

[16]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[17]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .

[18]  P. Lions,et al.  Hamilton-Jacobi equations with state constraints , 1990 .

[19]  P. Lions Optimal control of diffusion processes and hamilton–jacobi–bellman equations part 2 : viscosity solutions and uniqueness , 1983 .

[20]  P. L. Linos Optimal control of diffustion processes and hamilton-jacobi-bellman equations part I: the dynamic programming principle and application , 1983 .

[21]  Centro internazionale matematico estivo. Session,et al.  Viscosity solutions and applications : lectures given at the 2nd session of the Centro internazionale matematico estivo (C.I.M.E.) held in Montecatini Terme, Italy, June 12-20, 1995 , 1997 .

[22]  Sayah Awatif Equqtions D'Hamilton-Jacobi Du Premier Ordre Avec Termes Intégro-Différentiels: Partie II: Unicité Des Solutions De Viscosité , 1991 .

[23]  P. Souganidis,et al.  A uniqueness result for viscosity solutions of second order fully nonlinear partial di , 1988 .

[24]  Tina Hviid Rydberg The normal inverse gaussian lévy process: simulation and approximation , 1997 .

[25]  P. Lions,et al.  Viscosity solutions of fully nonlinear second-order elliptic partial differential equations , 1990 .

[26]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[27]  H. Soner Optimal control with state-space constraint I , 1986 .

[28]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[29]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[30]  Huy En Pham Optimal Stopping of Controlled Jump Diiusion Processes: a Viscosity Solution Approach , 1998 .

[31]  H. Soner Controlled markov processes, viscosity solutions and applications to mathematical finance , 1997 .