Spectral radius of strongly connected digraphs

Let D be a digraph with vertex set V ( D ) and A be the adjacency matrix of D . The largest eigenvalue of A , denoted by ? ( D ) , is called the spectral radius of the digraph D . In this paper, we establish some sharp upper or lower bounds for digraphs with some given graph parameters, such as clique number, girth, and vertex connectivity, and characterize the corresponding extremal graphs. In addition, we give the exact value of the spectral radii of those digraphs.

[1]  Huiqiu Lin,et al.  A note on the spectral characterization of strongly connected bicyclic digraphs , 2012 .

[2]  Hailiang Zhang,et al.  Distance spectral radius of digraphs with given connectivity , 2012, Discret. Math..

[3]  Baofeng Wu,et al.  The spectral radius of trees on k pendant vertices , 2005 .

[4]  Bojan Mohar,et al.  Eigenvalues and colorings of digraphs , 2010 .

[5]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[6]  D. Cvetkovic,et al.  An Introduction to the Theory of Graph Spectra: Introduction , 2009 .

[7]  Ein Analogon zum High Indices Theorem für Potenzreihen mit wenigen Vorzeichenwechseln , 1968 .

[8]  O. Perron Zur Theorie der Matrices , 1907 .

[9]  Qiao Li,et al.  Spectral radii of graphs with given chromatic number , 2007, Appl. Math. Lett..

[10]  M. Lewin On nonnegative matrices , 1971 .

[11]  J. Merikoski,et al.  Lower bounds for the numerical radius , 2005 .

[12]  Victor Neumann-Lara,et al.  The dichromatic number of a digraph , 1982, J. Comb. Theory, Ser. B.

[13]  Chi-Kwong Li,et al.  The numerical range of a nonnegative matrix , 2002 .

[14]  Bojan Mohar,et al.  The circular chromatic number of a digraph , 2004, J. Graph Theory.

[15]  Friedrich ESSER,et al.  Digraphs with real and gaussian spectra , 1980, Discret. Appl. Math..

[16]  R. Brualdi Spectra of digraphs , 2010 .

[17]  Huiqiu Lin,et al.  Spectral radius of digraphs with given dichromatic number , 2011 .

[18]  E. Williams,et al.  Introduction to the Theory of Grammar , 1986 .

[19]  A. Brauer,et al.  On the characteristic roots of tournament matrices , 1968 .

[20]  W. Greub Linear Algebra , 1981 .

[21]  S. Drury Solution of the conjecture of Brualdi and Li , 2012 .

[22]  Yuan Hong,et al.  A Sharp Upper Bound of the Spectral Radius of Graphs , 2001, J. Comb. Theory, Ser. B.

[23]  F. Kittaneh A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix , 2003 .

[24]  D. Gregory,et al.  Singular values of tournament matrices , 1999 .

[25]  John Maroulas,et al.  Perron–Frobenius type results on the numerical range , 2002 .

[26]  Michael Doob,et al.  Spectra of graphs , 1980 .

[27]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[28]  Numerical radius and zero pattern of matrices , 2007, math/0703177.

[29]  Herbert S. Wilf,et al.  Spectral bounds for the clique and independence numbers of graphs , 1986, J. Comb. Theory, Ser. B.