Genome sequence of the palaeopolyploid soybean

[1]  Steven B. Cannon,et al.  Applying Small-Scale DNA Signatures as an Aid in Assembling Soybean Chromosome Sequences , 2010, Adv. Bioinformatics.

[2]  Steven B Cannon,et al.  High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence , 2010, BMC Genomics.

[3]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[4]  S. Jackson,et al.  Molecular and Chromosomal Evidence for Allopolyploidy in Soybean1[OA] , 2009, Plant Physiology.

[5]  K. Bilyeu,et al.  The Low Phytic Acid Phenotype in Soybean Line CX1834 Is Due to Mutations in Two Homologs of the Maize Low Phytic Acid Gene , 2009 .

[6]  D. Soltis,et al.  Rosid radiation and the rapid rise of angiosperm-dominated forests , 2009, Proceedings of the National Academy of Sciences.

[7]  R. Shoemaker,et al.  Identification and Analyses of Candidate Genes for Rpp4-Mediated Resistance to Asian Soybean Rust in Soybean1[W][OA] , 2009, Plant Physiology.

[8]  Carol Soderlund,et al.  Integrating sequence with FPC fingerprint maps , 2009, Nucleic acids research.

[9]  Mihaela M. Martis,et al.  The Sorghum bicolor genome and the diversification of grasses , 2009, Nature.

[10]  S. Cannon,et al.  An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes , 2009, BMC Genomics.

[11]  A. Jauneau,et al.  In Vivo Interference with AtTCP20 Function Induces Severe Plant Growth Alterations and Deregulates the Expression of Many Genes Important for Development[C][W] , 2008, Plant Physiology.

[12]  Haibao Tang,et al.  Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. , 2008, Genome research.

[13]  Kazuo Shinozaki,et al.  Sequencing and Analysis of Approximately 40 000 Soybean cDNA Clones from a Full-Length-Enriched cDNA Library , 2008, DNA research : an international journal for rapid publication of reports on genes and genomes.

[14]  R. Shoemaker,et al.  Fractionation of synteny in a genomic region containing tandemly duplicated genes across glycine max, Medicago truncatula, and Arabidopsis thaliana. , 2008, The Journal of heredity.

[15]  Rex T. Nelson,et al.  Microsatellite discovery from BAC end sequences and genetic mapping to anchor the soybean physical and genetic maps. , 2008, Genome.

[16]  J. Bennetzen,et al.  The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants , 2008, Science.

[17]  M. Barkoulas,et al.  From genes to shape: regulatory interactions in leaf development. , 2007, Current opinion in plant biology.

[18]  J. Poulain,et al.  The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla , 2007, Nature.

[19]  M. Guerinot,et al.  FIT, the FER-LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR in Arabidopsis. , 2007, Plant physiology and biochemistry : PPB.

[20]  K. Chase,et al.  A Soybean Transcript Map: Gene Distribution, Haplotype and Single-Nucleotide Polymorphism Analysis , 2007, Genetics.

[21]  D. Penny,et al.  Patterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana. , 2006, Molecular biology and evolution.

[22]  Agnes P Chan,et al.  Uneven chromosome contraction and expansion in the maize genome. , 2006, Genome research.

[23]  M. Gribskov,et al.  The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray) , 2006, Science.

[24]  Michael Beckstette,et al.  Fast index based algorithms and software for matching position specific scoring matrices , 2006, BMC Bioinformatics.

[25]  P. Rougé,et al.  The Medicago truncatula Lysine Motif-Receptor-Like Kinase Gene Family Includes NFP and New Nodule-Expressed Genes1[W] , 2006, Plant Physiology.

[26]  V. Brendel,et al.  Genomewide comparative analysis of alternative splicing in plants. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Wojciechowski,et al.  Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. , 2005, Systematic biology.

[28]  S. Jackson,et al.  Pericentromeric Regions of Soybean (Glycine max L. Merr.) Chromosomes Consist of Retroelements and Tandemly Repeated DNA and Are Structurally and Evolutionarily Labile , 2005, Genetics.

[29]  R. Shoemaker,et al.  Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families. , 2005, Systematic biology.

[30]  Jessica A Schlueter,et al.  Mining EST databases to resolve evolutionary events in major crop species. , 2004, Genome.

[31]  Jianxin Ma,et al.  Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. , 2004, Genome research.

[32]  J. Shaw,et al.  Molecular Analyses of the Arabidopsis TUBBY-Like Protein Gene Family1 , 2004, Plant Physiology.

[33]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[34]  J. E. Specht,et al.  A new integrated genetic linkage map of the soybean , 2004, Theoretical and Applied Genetics.

[35]  Geoffrey J. Barton,et al.  The Jalview Java alignment editor , 2004, Bioinform..

[36]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[37]  S. Tabata,et al.  A receptor kinase gene of the LysM type is involved in legumeperception of rhizobial signals , 2003, Nature.

[38]  Stephen M. Mount,et al.  Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. , 2003, Nucleic acids research.

[39]  Carolyn Thomas,et al.  High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. , 2003, Genomics.

[40]  Jay J Thelen,et al.  Arabidopsis Genes Involved in Acyl Lipid Metabolism. A 2003 Census of the Candidates, a Study of the Distribution of Expressed Sequence Tags in Organs, and a Web-Based Database1 , 2003, Plant Physiology.

[41]  W. Schmidt Iron solutions: acquisition strategies and signaling pathways in plants. , 2003, Trends in plant science.

[42]  John F. McDonald,et al.  LTR_STRUC: a novel search and identification program for LTR retrotransposons , 2003, Bioinform..

[43]  M. Guerinot,et al.  Iron stress in plants , 2002, Genome Biology.

[44]  C. Curie,et al.  IRT1, an Arabidopsis Transporter Essential for Iron Uptake from the Soil and for Plant Growth Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.001388. , 2002, The Plant Cell Online.

[45]  L. Lepiniec,et al.  LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[46]  C. Burge,et al.  Computational inference of homologous gene structures in the human genome. , 2001, Genome research.

[47]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[48]  C. Soderlund,et al.  Contigs built with fingerprints, markers, and FPC V4.7. , 2000, Genome research.

[49]  V. Solovyev,et al.  Ab initio gene finding in Drosophila genomic DNA. , 2000, Genome research.

[50]  T. Moritz,et al.  The Arabidopsis Dwarf Mutant shi Exhibits Reduced Gibberellin Responses Conferred by Overexpression of a New Putative Zinc Finger Protein , 1999, Plant Cell.

[51]  B C Meyers,et al.  Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. , 1998, Genome research.

[52]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[53]  R. Shoemaker,et al.  Mapping genetic loci for iron deficiency chlorosis in soybean , 1997, Molecular Breeding.

[54]  Gregory D Schuler,et al.  Sequence mapping by electronic PCR , 1997, Genome research.

[55]  P. Keim,et al.  Genomic organization and evolution of the soybean SB92 satellite sequence , 1995, Plant Molecular Biology.

[56]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[57]  E. D. Earle,et al.  Nuclear DNA content of some important plant species , 1991, Plant Molecular Biology Reporter.

[58]  C. Shang,et al.  Identification of candidate gene mutation associated with low stachyose phenotype in soybean line PI200508. , 2009 .

[59]  G. Buss,et al.  Genetic Basis of the Low‐Phytate Trait in the Soybean Line CX1834 , 2009 .

[60]  Yves Van de Peer,et al.  i-ADHoRe 2.0: an improved tool to detect degenerated genomic homology using genomic profiles , 2008, Bioinform..

[61]  W. Rooney,et al.  Genome evolution in the genus Sorghum (Poaceae). , 2005, Annals of botany.

[62]  E. Mauceli,et al.  Whole-genome sequence assembly for mammalian genomes: Arachne 2. , 2003, Genome research.

[63]  R. Shoemaker,et al.  Field and nutrient solution tests measure similar mechanisms controlling iron deficiency chlorosis in soybean , 1998 .

[64]  K. Reinert,et al.  Physical mapping , 1996 .

[65]  Yasuko Takahashi,et al.  Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events , 2022 .

[66]  R. Durbin,et al.  Mapping Quality Scores Mapping Short Dna Sequencing Reads and Calling Variants Using P

, 2022 .