Investigation of the reliability of 4H-SiC MOS devices for high temperature applications

Abstract In this paper, the excellent reliability of 4H–SiC MOS devices during high temperature operation is demonstrated for a gate oxide processed in N 2 O. A temperature dependent Fowler–Nordheim analysis is used to show that statistical energy spreading accounts for only part of the reported temperature induced barrier height degradation. Poole–Frenkel current caused by acceptor like traps in the oxide due to carbon interstitials is proposed to be responsible for the additional current observed. Temperature and electric field acceleration of the time to dielectric breakdown is investigated at elevated temperatures in order to predict the expected MOS lifetime during high temperature operation.

[1]  Thomas Frauenheim,et al.  The mechanism of defect creation and passivation at the SiC/SiO2 interface , 2007 .

[2]  K. Matocha,et al.  Time-Dependent Dielectric Breakdown of 4H-SiC MOS Capacitors and DMOSFETs , 2008, IEEE Transactions on Electron Devices.

[3]  M. Imaizumi,et al.  Successful enhancement of lifetime for SiO/sub 2/ on 4H-SiC by N/sub 2/O anneal , 2004, IEEE Electron Device Letters.

[4]  John D. Cressler,et al.  Direct current characterization of depletion-mode 6HSiC MOSFETs from 294 to 723 K , 1996 .

[5]  O. W. Holland,et al.  Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide , 2001, IEEE Electron Device Letters.

[6]  Bo Monemar,et al.  Electron effective masses in 4H SiC , 1995 .

[7]  M. De Handbuch der Physik , 1957 .

[8]  John W. Palmour,et al.  N2O Processing Improves the 4H-SiC:SiO2 Interface , 2002 .

[9]  W. Wondrak Physical limits and lifetime limitations of semiconductor devices at high temperatures , 1999 .

[10]  J. J. A. Cooper,et al.  Advances in SiC MOS Technology , 1997 .

[11]  Gate Oxide Long-Term Reliability of 4H-SiC MOS Devices , 2010 .

[12]  H. B. Harrison,et al.  Analysis of Fowler–Nordheim injection in NO nitrided gate oxide grown on n-type 4H–SiC , 2000 .

[13]  J. Stathis,et al.  Dielectric breakdown mechanisms in gate oxides , 2005 .

[14]  Wolfgang R. Fahrner,et al.  Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications , 2001, IEEE Trans. Ind. Electron..

[15]  S. Tanimoto Impact of Dislocations on Gate Oxide in SiC MOS Devices and High Reliability ONO Dielectrics , 2006 .

[16]  Peter Friedrichs,et al.  Electrical Characterization of MOS Structures with Deposited Oxides Annealed in N2O or NO , 2009 .

[17]  Constantin Papadas,et al.  Temperature dependence of the Fowler–Nordheim current in metal‐oxide‐degenerate semiconductor structures , 1995 .

[18]  Max J. Schulz,et al.  Band offsets and electronic structure of SiC/SiO2 interfaces , 1996 .

[19]  P. Neudeck,et al.  High-temperature electronics - a role for wide bandgap semiconductors? , 2002, Proc. IEEE.

[20]  S. Dimitrijev,et al.  Effects of nitridation in gate oxides grown on 4H-SiC , 2001 .

[21]  A. Hefner,et al.  Reliability of SiC MOS devices , 2004 .

[22]  Prasad Chaparala,et al.  Characterization of time-dependent dielectric breakdown in intrinsic thin SiO2 , 1996 .

[23]  T. Ouisse,et al.  High-field Fowler - Nordheim stress of n-type silicon carbide metal-oxide-semiconductor capacitors , 1997 .

[24]  A. Agarwal,et al.  Temperature dependence of Fowler-Nordheim current in 6H- and 4H-SiC MOS capacitors , 1997, IEEE Electron Device Letters.

[25]  Alan Mathewson,et al.  Dielectric Reliability Measurement Methods: A Review , 1998 .

[26]  M. Lenzlinger,et al.  Fowler‐Nordheim Tunneling into Thermally Grown SiO2 , 1969 .

[27]  M. Gurfinkel,et al.  Time-Dependent Dielectric Breakdown of 4H-SiC/$ \hbox{SiO}_{2}$ MOS Capacitors , 2008, IEEE Transactions on Device and Materials Reliability.

[28]  Chenming Hu,et al.  Temperature acceleration of time-dependent dielectric breakdown , 1989 .

[29]  Sima Dimitrijev,et al.  Advances in SiC power MOSFET technology , 2003, Microelectron. Reliab..