Fluid dynamics of an idealized left ventricle: the extended Nitsche's method for the treatment of heart valves as mixed time varying boundary conditions

In this work, we study the blood flow dynamics in idealized left ventricles (LV) of the human heart modelled by the Navier-Stokes equations with mixed time varying boundary conditions. The latter are introduced for simulating the functioning of the aortic and mitral valves. On the basis of the extended Nitsche's method firstly presented in [Juntunen and Stenberg, Mathematics of Computation, 2009], we propose a formulation allowing an efficient and straightforward numerical treatment of the opening and closing phases of the heart valves that are associated with different kind of boundary conditions, namely, natural and essential, switching during each heartbeat. Moreover, our formulation already includes terms preventing the numerical instabilities associated to backflow divergence, that is, nonphysical reinflow at the valves. We present and discuss numerical results for the LV obtained by means of isogeometric analysis for the spatial approximation with the aim of both analysing the formulation and showing the effectiveness of the approach. In particular, we show that the formulation allows to reproduce meaningful results even in idealized LV. Copyright (C) 2017 John Wiley & Sons, Ltd.

[1]  A. Marsden,et al.  A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations , 2011 .

[2]  Gianni Pedrizzetti,et al.  Intraventricular vortex flow changes in the infarcted left ventricle: numerical results in an idealised 3D shape , 2011, Computer methods in biomechanics and biomedical engineering.

[3]  S. Giuliani,et al.  Lagrangian and Eulerian Finite Element Techniques for Transient Fluid-Structure Interaction Problems , 1977 .

[4]  A P Yoganathan,et al.  Left ventricular blood flow patterns in normal subjects: a quantitative analysis by three-dimensional magnetic resonance velocity mapping. , 1995, Journal of the American College of Cardiology.

[5]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[6]  Anna Tagliabue,et al.  Isogeometric Analysis for Reduced Fluid-Structure Interaction Models in Haemodynamic Applications , 2012 .

[7]  Charles A. Taylor,et al.  Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow , 2009 .

[8]  Thomas J. R. Hughes,et al.  Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation , 2014, Computational Mechanics.

[9]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[10]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[11]  Franck Nicoud,et al.  Image-based large-eddy simulation in a realistic left heart , 2014 .

[12]  Alfio Quarteroni,et al.  Numerical modeling of heart valves using resistive Eulerian surfaces , 2016, International journal for numerical methods in biomedical engineering.

[13]  Toshiaki Hisada,et al.  Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. , 2004, Biophysical journal.

[14]  Arash Kheradvar,et al.  High-speed particle image velocimetry to assess cardiac fluid dynamics in vitro: From performance to validation , 2012 .

[15]  M. Yacoub,et al.  Asymmetric redirection of flow through the heart , 2000, Nature.

[16]  C. Peskin,et al.  A three-dimensional computational method for blood flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid , 1989 .

[17]  Gianni Pedrizzetti,et al.  Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. , 2008, JACC. Cardiovascular imaging.

[18]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[19]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[20]  Jiun-Jr Wang,et al.  Expanding application of the Wiggers diagram to teach cardiovascular physiology. , 2014, Advances in physiology education.

[21]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[22]  Rolf Rannacher,et al.  ARTIFICIAL BOUNDARIES AND FLUX AND PRESSURE CONDITIONS FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS , 1996 .

[23]  Yuri Bazilevs,et al.  Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling , 2012 .

[24]  Giorgio Galanti,et al.  Comparative numerical study on left ventricular fluid dynamics after dilated cardiomyopathy. , 2013, Journal of biomechanics.

[25]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[26]  A. Quarteroni,et al.  Nitsche"s method for parabolic Partial Differential Equations with mixed time varying boundary conditions , 2016 .

[27]  Jean Hertzberg,et al.  Development and validation of echo PIV , 2004 .

[28]  Liang Zhong,et al.  Fluid-dynamics modelling of the human left ventricle with dynamic mesh for normal and myocardial infarction: Preliminary study , 2012, Comput. Biol. Medicine.

[29]  L. Shampine,et al.  A 3(2) pair of Runge - Kutta formulas , 1989 .

[30]  Alfio Quarteroni,et al.  Geometric multiscale modeling of the cardiovascular system, between theory and practice , 2016 .

[31]  P. Verdonck,et al.  Computer simulation of intraventricular flow and pressure gradients during diastole. , 2000, Journal of biomechanical engineering.

[32]  A P Yoganathan,et al.  Computational modeling of left heart diastolic function: examination of ventricular dysfunction. , 2000, Journal of biomechanical engineering.

[33]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[34]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[35]  C. Peskin,et al.  Modelling cardiac fluid dynamics and diastolic function , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[36]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[37]  Thomas J. R. Hughes,et al.  Isogeometric Analysis for Topology Optimization with a Phase Field Model , 2012 .

[38]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[39]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[40]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[41]  A. Quarteroni Numerical Models for Differential Problems , 2009 .

[42]  Volker Gravemeier,et al.  A novel formulation for Neumann inflow boundary conditions in biomechanics , 2012, International journal for numerical methods in biomedical engineering.

[43]  Luis G. Vargas,et al.  Dirac distributions and threshold firing in neural networks , 1989 .

[44]  Alfio Quarteroni,et al.  A patient-specific aortic valve model based on moving resistive immersed implicit surfaces , 2017, Biomechanics and Modeling in Mechanobiology.

[45]  H. Torp,et al.  Velocity profiles in mitral blood flow based on three-dimensional freehand colour flow imaging acquired at high frame rate. , 2000, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of Cardiology.

[46]  G. Pedrizzetti,et al.  Combined experimental and numerical analysis of the flow structure into the left ventricle. , 2007, Journal of biomechanics.

[47]  Giuseppe Savaré,et al.  Parabolic problems with mixed variable lateral conditions: An abstract approach , 1997 .

[48]  F. D. Omenichini,et al.  Three-dimensional filling flow into a model left ventricle , 2005 .

[49]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[50]  B J Bellhouse,et al.  Fluid mechanics of a model mitral valve and left ventricle. , 1972, Cardiovascular research.

[51]  William Stewart,et al.  Recommendations for chamber quantification. , 2006, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of Cardiology.

[52]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[53]  Matteo Astorino,et al.  A robust and efficient valve model based on resistive immersed surfaces , 2012, International journal for numerical methods in biomedical engineering.

[54]  Alfio Quarteroni,et al.  Integrated Heart—Coupling multiscale and multiphysics models for the simulation of the cardiac function , 2017 .

[55]  P. Moin,et al.  Eddies, streams, and convergence zones in turbulent flows , 1988 .

[56]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[57]  Christian H. Whiting,et al.  STABILIZED FINITE ELEMENT METHODS FOR FLUID DYNAMICS USING A HIERARCHICAL BASIS , 1999 .

[58]  Gianni Pedrizzetti,et al.  Three-dimensional filling flow into a model left ventricle , 2005, Journal of Fluid Mechanics.

[59]  T. Böhlke,et al.  Partitioned Fluid–Solid Coupling for Cardiovascular Blood Flow , 2010, Annals of Biomedical Engineering.

[60]  Arif Masud,et al.  A multiscale stabilized ALE formulation for incompressible flows with moving boundaries , 2010 .

[61]  Gianni Pedrizzetti,et al.  Vortex dynamics in a model left ventricle during filling , 2002 .

[62]  Rolf Stenberg,et al.  Nitsche's method for general boundary conditions , 2009, Math. Comput..

[63]  H Reul,et al.  Fluid mechanics of the natural mitral valve. , 1981, Journal of biomechanics.

[64]  N. Stergiopulos,et al.  Validation of a one-dimensional model of the systemic arterial tree. , 2009, American journal of physiology. Heart and circulatory physiology.

[65]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[66]  G. Pedrizzetti,et al.  Emerging trends in CV flow visualization. , 2012, JACC. Cardiovascular imaging.

[67]  Yuri Bazilevs,et al.  Wind turbine aerodynamics using ALE–VMS: validation and the role of weakly enforced boundary conditions , 2012, Computational Mechanics.

[68]  Alfonso Caiazzo,et al.  A tangential regularization method for backflow stabilization in hemodynamics , 2014, J. Comput. Phys..

[69]  L. Formaggia,et al.  Stability analysis of second-order time accurate schemes for ALE-FEM , 2004 .

[70]  Fabio Nobile,et al.  A Stability Analysis for the Arbitrary Lagrangian Eulerian Formulation with Finite Elements , 1999 .

[71]  Gianni Pedrizzetti,et al.  Fluid dynamics of the left ventricular filling in dilated cardiomyopathy. , 2002, Journal of biomechanics.

[72]  C. Peskin,et al.  Heart Simulation by an Immersed Boundary Method with Formal Second-order Accuracy and Reduced Numerical Viscosity , 2001 .

[73]  Jung Hee Seo,et al.  Computational modeling and analysis of intracardiac flows in simple models of the left ventricle , 2012 .

[74]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[75]  Christian Vergara,et al.  Nitsche’s Method for Defective Boundary Value Problems in Incompressibile Fluid-dynamics , 2011, J. Sci. Comput..