Electronic Transport via Interstitial States in Mayenite Electride

[1]  A. Fujimori Electride surface hosts Wigner-crystal melting , 2022, Nature Materials.

[2]  A. Oganov,et al.  Localization Mechanism of Interstitial Electronic States in Electride Mayenite. , 2022, The journal of physical chemistry letters.

[3]  Xingyi Song,et al.  Unique Catalytic Mechanism for Ru-Loaded Ternary Intermetallic Electrides for Ammonia Synthesis. , 2022, Journal of the American Chemical Society.

[4]  A. Oganov,et al.  Interacting Electrons in Two-Dimensional Electride Ca2N , 2021, The Journal of Physical Chemistry C.

[5]  H. Hosono,et al.  Advances in Materials and Applications of Inorganic Electrides. , 2021, Chemical reviews.

[6]  E. Gaigneaux,et al.  Recent Advances in Heterogeneous Catalysis for Ammonia Synthesis , 2020, ChemCatChem.

[7]  Renheng Wang,et al.  A comprehensive review on synthesis of pristine and doped inorganic room temperature stable mayenite electride, [Ca24Al28O64]4+(e−)4 and its applications as a catalyst , 2019, Progress in Solid State Chemistry.

[8]  G. Sant,et al.  Understanding Oxygen Nonstoichiometry in Mayenite: From Electride to Oxygen Radical Clathrate , 2019, The Journal of Physical Chemistry C.

[9]  H. Hosono,et al.  Direct Activation of Cobalt Catalyst by 12CaO·7Al2O3 Electride for Ammonia Synthesis , 2019, ACS Catalysis.

[10]  Donald G Truhlar,et al.  Self-Interaction Error in Density Functional Theory: An Appraisal. , 2018, The journal of physical chemistry letters.

[11]  Hideo Hosono,et al.  Ru-Loaded C12A7:e– Electride as a Catalyst for Ammonia Synthesis , 2017 .

[12]  H. Hosono,et al.  Superconductivity in room-temperature stable electride and high-pressure phases of alkali metals , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  Arash A. Mostofi,et al.  An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions , 2014, Comput. Phys. Commun..

[14]  Boris Kozinsky,et al.  BoltzWann: A code for the evaluation of thermoelectric and electronic transport properties with a maximally-localized Wannier functions basis , 2013, Comput. Phys. Commun..

[15]  H. Hosono,et al.  Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. , 2012, Nature chemistry.

[16]  H. Hosono,et al.  Synthesis and properties of 12CaO · 7Al2O3 electride: review of single crystal and thin film growth , 2012 .

[17]  P. Edwards Electrons in Cement , 2011, Science.

[18]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  T. Kamiya,et al.  Localized and Delocalized Electrons in Room-Temperature Stable Electride [Ca24Al28O64]4+(O2-)2-x(e-)2x : Analysis of Optical Reflectance Spectra , 2008 .

[20]  H. Hosono,et al.  Superconductivity in an inorganic electride 12CaO x 7Al2O3:e-. , 2007, Journal of the American Chemical Society.

[21]  S. Bruque,et al.  Crystal structures and in-situ formation study of mayenite electrides. , 2007, Inorganic chemistry.

[22]  Yue Pan,et al.  Production of hydrogen from catalytic steam reforming of bio-oil using C12A7-O--based catalysts , 2007 .

[23]  T. Kamiya,et al.  Metallic state in a lime-alumina compound with nanoporous structure. , 2007, Nano letters.

[24]  H. Hosono,et al.  From insulator to electride: a theoretical model of nanoporous oxide 12CaO.7Al2O3. , 2007, Journal of the American Chemical Society.

[25]  R. Scalettar,et al.  Realistic investigations of correlated electron systems with LDA + DMFT , 2006 .

[26]  T. Kamiya,et al.  Intense thermal field electron emission from room-temperature stable electride , 2005 .

[27]  Hideo Hosono,et al.  Field Emission of Electron Anions Clathrated in Subnanometer‐Sized Cages in [Ca24Al28O64]4+(4e–) , 2004 .

[28]  A. Freeman,et al.  Hopping versus bulk conductivity in transparent oxides: 12CaO.7Al2O3 , 2004, cond-mat/0404187.

[29]  Gabriel Kotliar,et al.  Strongly Correlated Materials: Insights From Dynamical Mean-Field Theory , 2004 .

[30]  J. L. Dye,et al.  Electrons as Anions , 2003, Science.

[31]  Piscataway,et al.  First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory , 1997, cond-mat/9704231.