Single event upsets in implantable cardioverter defibrillators

Single event upsets (SEU) have been observed in implantable cardiac defibrillators. The incidence of SEUs is well modeled by upset rate calculations attributable to the secondary cosmic ray neutron flux. The effect of recent interpretations of the shape of the heavy ion cross-section curve on neutron burst generation rate calculations is discussed. The model correlates well with clinical experience and is consistent with the expected geographical variation of the secondary cosmic ray neutron flux. The observed SER was 9.3/spl times/10/sup -12/ upsets/bit-hr from 22 upsets collected over a total of 284672 device days. This is the first clinical data set obtained indicating the effects of cosmic radiation on implantable devices. Importantly, it may be used to predict the susceptibility of future implantable device designs to cosmic radiation. The significance of cosmic radiation effects relative to other radiation sources applicable to implantable devices is discussed.

[1]  Wilmot N. Hess,et al.  COSMIC-RAY NEUTRON ENERGY SPECTRUM , 1959 .

[2]  J. Ziegler THE STOPPING AND RANGE OF IONS IN SOLIDS , 1988 .

[3]  F. Masuoka Are you ready for next-generation dynamic RAM chips? , 1990, IEEE Spectrum.

[4]  E. Petersen,et al.  Cross section measurements and upset rate calculations , 1996 .

[5]  E. Normand,et al.  First observations of power MOSFET burnout with high energy neutrons , 1996 .

[6]  D. E. Russell,et al.  Cosmic ray neutron induced upsets as a major contributor to the soft error rate of current and future generation DRAMs , 1996, Proceedings of International Reliability Physics Symposium.

[7]  Kenneth A. LaBel,et al.  Application of a diffusion model to SEE cross sections of modern devices [DRAMs] , 1995 .

[8]  E. Normand,et al.  Guidelines for predicting single-event upsets in neutron environments (RAM devices) , 1991 .

[9]  B. Tabatznik,et al.  Standby automatic defibrillator. An approach to prevention of sudden coronary death. , 1970, Archives of internal medicine.

[10]  James F. Ziegler,et al.  Terrestrial cosmic rays , 1996, IBM J. Res. Dev..

[11]  J. M. Soden,et al.  The Effects of Test Conditions on MOS Radiation-Hardness Results , 1981, IEEE Transactions on Nuclear Science.

[12]  Craig Underwood,et al.  Observation and prediction of SEU in Hitachi SRAMs in low altitude polar orbits , 1993 .

[13]  S K Souliman,et al.  Pacemaker Failure Induced by Radiotherapy , 1994, Pacing and clinical electrophysiology : PACE.

[14]  E.L. Petersen Interpretation of heavy ion cross section measurements , 1995, Proceedings of the Third European Conference on Radiation and its Effects on Components and Systems.

[15]  J. Ziegler,et al.  stopping and range of ions in solids , 1985 .

[16]  T. Baker,et al.  Altitude and latitude variations in avionics SEU and atmospheric neutron flux , 1993 .

[17]  B. R. Wilkins,et al.  Influences on soft error rates in static RAMs , 1987 .

[18]  J. Ziegler,et al.  Effect of Cosmic Rays on Computer Memories , 1979, Science.

[19]  P. J. McNulty,et al.  Monitoring SEU Parameters at Reduced Bias v , .

[20]  C. Hu,et al.  Alpha-particle-induced field and enhanced collection of carriers , 1982, IEEE Electron Device Letters.

[21]  G. Fletcher Textbook of radiotherapy , 1973 .

[22]  A. Stacey,et al.  Radiation doses delivered to the skin, bone marrow and gonads of patients during cardiac catheterisation and angiocardiography. , 1968, British Journal of Radiology.

[23]  W. J. Stapor,et al.  Two parameter Bendel model calculations for predicting proton induced upset (ICs) , 1990 .

[24]  G. R. Srinivasan,et al.  Soft-error Monte Carlo modeling program, SEMM , 1996, IBM J. Res. Dev..

[25]  A. Castellanos,et al.  Long-term survival after prehospital cardiac arrest: analysis of outcome during an 8 year study. , 1984, Circulation.

[26]  Martin G. Buehler,et al.  An Analytical Method for Predicting CMOS SRAM Upsets with Application to Asymmetrical Memory Cells , 1986, IEEE Transactions on Nuclear Science.

[27]  R. Koga,et al.  Single Event Upset Rate Estimates for a 16-K CMOS SRAM , 1985, IEEE Transactions on Nuclear Science.

[28]  E. Normand Single-event effects in avionics , 1996 .

[29]  A. Henning,et al.  Radiation‐Induced Effects in Multiprogrammable Pacemakers and Implantable Defibrillators , 1991, Pacing and clinical electrophysiology : PACE.

[30]  J. R. Letaw,et al.  Neutron Generated Single-Event Upsets in the Atmosphere , 1984, IEEE Transactions on Nuclear Science.

[31]  P. J. McNulty,et al.  Estimating the Dimensions of the SEU-Sensitive Volume , 1987, IEEE Transactions on Nuclear Science.

[32]  E. Normand,et al.  Incorporation of ENDF-V neutron cross section data for calculating neutron-induced single event upsets , 1989 .

[33]  P. J. McNulty,et al.  Determination of SEU parameters of NMOS and CMOS SRAMs , 1991 .

[34]  R. Koga,et al.  SEU test techniques for 256 K static RAMs and comparisons of upsets by heavy ions and protons , 1988 .

[36]  T. Masuhara,et al.  A 256K CMOS SRAM with variable impedance data-line loads , 1985, IEEE Journal of Solid-State Circuits.

[37]  K. C. Chandler,et al.  Calculations of neutron flux spectra induced in the Earth's atmosphere by galactic cosmic rays , 1973 .