An Efficient Algorithm for Connected Attribute Thinnings and Thickenings

Connected attribute filters are morphological operators widely used for their ability of simplifying the image without moving its contours. In this paper, we present a fast, versatile and easy-to-implement algorithm for grayscale connected attribute thinnings and thickennings, a subclass of connected filters for the wide range of non-increasing attributes. We show that our algorithm consumes less memory and is computationally more efficient than other available methods on natural images, for strictly identical results.

[1]  Fernand Meyer,et al.  Levelings, Image Simplification Filters for Segmentation , 2004, Journal of Mathematical Imaging and Vision.

[2]  Robert B. Dial,et al.  Algorithm 360: shortest-path forest with topological ordering [H] , 1969, CACM.

[3]  F. Guichard,et al.  Mathematical Morphology " Almost Everywhere " , 2002 .

[4]  Pascal Monasse,et al.  Grain Filters , 2002, Journal of Mathematical Imaging and Vision.

[5]  J. W. Modestino,et al.  Flat Zones Filtering, Connected Operators, and Filters by Reconstruction , 1995 .

[6]  Wim H. Hesselink Salembier's Min-tree algorithm turned into breadth first search , 2003, Inf. Process. Lett..

[7]  E. R. Urbach,et al.  Shape-only granulometries and gray-scale shape filters , 2002 .

[8]  Henk J. A. M. Heijmans Connected Morphological Operators for Binary Images , 1999, Comput. Vis. Image Underst..

[9]  Michael H. F. Wilkinson,et al.  Interactive Shape Preserving Filtering and Visualization of Volumetric Data , 2002 .

[10]  Philippe Salembier,et al.  Connected operators and pyramids , 1993, Optics & Photonics.

[11]  Jérôme Darbon,et al.  An efficient algorithm for attribute openings and closings , 2005, 2005 13th European Signal Processing Conference.

[12]  Michel Couprie,et al.  Building the Component Tree in Quasi-Linear Time , 2006, IEEE Transactions on Image Processing.

[13]  Scott T. Acton,et al.  Scale space classification using area morphology , 2000, IEEE Trans. Image Process..

[14]  Philippe Salembier,et al.  Antiextensive connected operators for image and sequence processing , 1998, IEEE Trans. Image Process..

[15]  Ronald Jones,et al.  Attribute Openings, Thinnings, and Granulometries , 1996, Comput. Vis. Image Underst..

[16]  Michael H. F. Wilkinson,et al.  Shape Preserving Filament Enhancement Filtering , 2001, MICCAI.

[17]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[18]  José Crespo,et al.  The flat zone approach: A general low-level region merging segmentation method , 1997, Signal Process..

[19]  Michael H. F. Wilkinson,et al.  A Comparison of Algorithms for Connected Set Openings and Closings , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Petros Maragos,et al.  Threshold Superposition in Morphological Image Analysis Systems , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Michel Couprie,et al.  Quasilinear algorithm for the component tree , 2004, IS&T/SPIE Electronic Imaging.

[22]  L. Vincent Grayscale area openings and closings, their efficient implementation and applications , 1993 .

[23]  Michael H. F. Wilkinson,et al.  Fast Morphological Attribute Operations Using Tarjan's Union-Find Algorithm , 2000, ISMM.

[24]  Corinne Vachier Morphological scale-space analysis and feature extraction , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[25]  F. Glover,et al.  A computational analysis of alternative algorithms and labeling techniques for finding shortest path trees , 1979, Networks.

[26]  Henk J. A. M. Heijmans,et al.  Theoretical Aspects of Gray-Level Morphology , 1991, IEEE Trans. Pattern Anal. Mach. Intell..