In vitro and in vivo studies on as-extruded Mg- 5.25wt.%Zn-0.6wt.%Ca alloy as biodegradable metal

[1]  N. Birbilis,et al.  Fundamentals and advances in magnesium alloy corrosion , 2017 .

[2]  Yufeng Zheng,et al.  Degradable, absorbable or resorbable—what is the best grammatical modifier for an implant that is eventually absorbed by the body? , 2017, Science China Materials.

[3]  C. Vogt,et al.  Biocompatibility and degradation of LAE442-based magnesium alloys after implantation of up to 3.5years in a rabbit model. , 2016, Acta biomaterialia.

[4]  S. Stanzl-Tschegg,et al.  Long-term in vivo degradation behavior and near-implant distribution of resorbed elements for magnesium alloys WZ21 and ZX50. , 2016, Acta biomaterialia.

[5]  S. Virtanen,et al.  Protective layer formation on magnesium in cell culture medium. , 2016, Materials science & engineering. C, Materials for biological applications.

[6]  Yufeng Zheng,et al.  In Vitro Corrosion and Cytocompatibility of a Microarc Oxidation Coating and Poly(L-lactic acid) Composite Coating on Mg-1Li-1Ca Alloy for Orthopedic Implants. , 2016, ACS applied materials & interfaces.

[7]  Wenjiang Ding,et al.  Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials , 2016, Regenerative biomaterials.

[8]  S. Stanzl-Tschegg,et al.  Reaction of bone nanostructure to a biodegrading Magnesium WZ21 implant - A scanning small-angle X-ray scattering time study. , 2016, Acta biomaterialia.

[9]  P. Uggowitzer,et al.  Influence of trace impurities on the in vitro and in vivo degradation of biodegradable Mg-5Zn-0.3Ca alloys. , 2015, Acta biomaterialia.

[10]  H. Hermawan,et al.  The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats , 2015, Journal of orthopaedic translation.

[11]  N. Angrisani,et al.  In vitro and in vivo corrosion of the novel magnesium alloy Mg–La–Nd–Zr: influence of the measurement technique and in vivo implant location , 2015, Biomedical materials.

[12]  Yufeng Zheng,et al.  Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. , 2015, Acta biomaterialia.

[13]  J. Meng,et al.  Influence of deformation rate on microstructure, texture and mechanical properties of indirect-extruded Mg–Zn–Ca alloy , 2015 .

[14]  Nan Huang,et al.  Absorbable magnesium-based stent: physiological factors to consider for in vitro degradation assessments , 2015, Regenerative biomaterials.

[15]  M. Medraj,et al.  Microstructure and bio‐corrosion behavior of Mg–Zn and Mg–Zn–Ca alloys for biomedical applications , 2014 .

[16]  E. Han,et al.  Corrosion of magnesium alloy AZ31: The influence of bicarbonate, sulphate, hydrogen phosphate and dihydrogen phosphate ions in saline solution , 2014 .

[17]  Yigang Chen,et al.  Comparison of the effects of Mg–6Zn and Ti–3Al–2.5V alloys on TGF-β/TNF-α/VEGF/b-FGF in the healing of the intestinal tract in vivo , 2014, Biomedical materials.

[18]  W. Tillmann,et al.  Biocompatibility of rapidly solidified magnesium alloy RS66 as a temporary biodegradable metal. , 2013, Acta biomaterialia.

[19]  W. Heineman,et al.  Fast escape of hydrogen from gas cavities around corroding magnesium implants. , 2013, Acta biomaterialia.

[20]  C. Stukenborg-Colsman,et al.  Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study , 2013, Biomedical engineering online.

[21]  J. Reifenrath,et al.  Influence of the grain size on the in vivo degradation behaviour of the magnesium alloy LAE442 , 2013, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[22]  T. Lei,et al.  Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys , 2012 .

[23]  Frank Feyerabend,et al.  Effects of corrosion environment and proteins on magnesium corrosion , 2012 .

[24]  Yufeng Zheng,et al.  In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. , 2012, Acta biomaterialia.

[25]  Tim Woodfield,et al.  Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing. , 2012, Journal of biomedical materials research. Part B, Applied biomaterials.

[26]  P. Uggowitzer,et al.  Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. , 2012, Acta biomaterialia.

[27]  R. A. Antunes,et al.  Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation. , 2012, Acta biomaterialia.

[28]  Liguo Wang,et al.  In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg-Zn-Ca alloy for bone implant application. , 2011, Colloids and surfaces. B, Biointerfaces.

[29]  T. Ishimoto,et al.  Development of high Zr-containing Ti-based alloys with low Young's modulus for use in removable implants , 2011 .

[30]  P. Drob,et al.  Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy. , 2011, Journal of the mechanical behavior of biomedical materials.

[31]  Janine Fischer,et al.  Improved cytotoxicity testing of magnesium materials , 2011 .

[32]  Yufeng Zheng,et al.  Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy. , 2011, Acta biomaterialia.

[33]  M. Zheng,et al.  Influence of ECAP routes on microstructure and mechanical properties of Mg–Zn–Ca alloy , 2010 .

[34]  Yufeng Zheng,et al.  A review on magnesium alloys as biodegradable materials , 2010 .

[35]  Yuewei Xi,et al.  In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy. , 2010, Acta biomaterialia.

[36]  Akiko Yamamoto,et al.  Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro , 2009 .

[37]  Yunchang Xin,et al.  Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. , 2008, Acta biomaterialia.

[38]  Frank Witte,et al.  Degradable biomaterials based on magnesium corrosion , 2008 .

[39]  Yufeng Zheng,et al.  The development of binary Mg-Ca alloys for use as biodegradable materials within bone. , 2008, Biomaterials.

[40]  H. Haferkamp,et al.  In vivo corrosion of four magnesium alloys and the associated bone response. , 2005, Biomaterials.

[41]  G. Thouas,et al.  Metallic implant biomaterials , 2015 .

[42]  Yufeng Zheng,et al.  Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. , 2015, Acta biomaterialia.

[43]  Berend Denkena,et al.  Biodegradable magnesium implants for orthopedic applications , 2012, Journal of Materials Science.