Computer-supported Analysis of Positive Properties, Ultrafilters and Modal Collapse in Variants of Gödel's Ontological Argument

Three variants of Kurt Godel's ontological argument, as proposed byDana Scott, C. Anthony Anderson and Melvin Fitting, are encoded and rigorously assessed on the computer. In contrast to Scott's version of Godel's argument, the two variants contributed by Anderson and Fitting avoid modal collapse. Although they appear quite different on a cursory reading, they are in fact closely related, as our computer-supported formal analysis (conducted in the proof assistant system Isabelle/HOL) reveals. Key to our formal analysis is the utilization of suitably adapted notions of (modal) ultrafilters, and a careful distinction between extensions and intensions of positive properties.

[1]  S. Kovac Modal collapse in Gödel's ontological proof , 2012 .

[2]  C. Anthony Anderson,et al.  Gödel's ontological proof revisited , 1996 .

[3]  Christoph Benzmüller,et al.  Church’s Type Theory , 2006 .

[4]  D. Sudakin,et al.  Appendix A , 2007, Journal of agromedicine.

[5]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[6]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[7]  A Modal Version of the Ontological Argument , 2022 .

[8]  C. Allen,et al.  Stanford Encyclopedia of Philosophy , 2011 .

[9]  P. Hájek Magari and others on Gödel’s ontological proof , 2017 .

[10]  Bruno Woltzenlogel Paleo,et al.  Interacting with Modal Logics in the Coq Proof Assistant , 2015, CSR.

[11]  M. Fitting Types, Tableaus, and Gödel's God , 2002 .

[12]  Petr Hájek,et al.  A New Small Emendation of Gödel's Ontological Proof , 2002, Stud Logica.

[13]  Lawrence C. Paulson,et al.  Extending Sledgehammer with SMT Solvers , 2011, CADE.

[14]  Christoph Benzmüller,et al.  Types, Tableaus and Gödel's God in Isabelle/HOL , 2017, Arch. Formal Proofs.

[15]  Lawrence C. Paulson,et al.  Quantified Multimodal Logics in Simple Type Theory , 2009, Logica Universalis.

[16]  Lawrence C. Paulson,et al.  The Higher-Order Prover Leo-II , 2015, Journal of Automated Reasoning.

[17]  B. W. Paleo,et al.  An Object-Logic Explanation for the Inconsistency in Gödel's Ontological Theory (Extended Abstract, Sister Conferences) , 2016 .

[18]  Tobias Nipkow,et al.  Nitpick: A Counterexample Generator for Higher-Order Logic Based on a Relational Model Finder , 2010, ITP.

[19]  Christoph Benzmüller,et al.  Computer Science and Metaphysics: A Cross-Fertilization , 2019, Open Philosophy.

[20]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[21]  A. Anderson,et al.  Some Emendations of Gödel's Ontological Proof , 1990 .

[22]  Jordan Howard Sobel,et al.  Logic and Theism: Arguments for and against Beliefs in God , 2003 .

[23]  A. Hazen,et al.  On Gödel's ontological proof , 1998 .

[24]  Bruno Woltzenlogel Paleo,et al.  Automating Gödel's Ontological Proof of God's Existence with Higher-order Automated Theorem Provers , 2014, ECAI.

[25]  J. Thomson On being and saying : essays for Richard Cartwright , 1987 .

[26]  Christoph Benzmüller,et al.  Automating Emendations of the Ontological Argument in Intensional Higher-Order Modal Logic , 2017, KI.

[27]  Christoph Benzmüller,et al.  Universal (meta-)logical reasoning: Recent successes , 2019, Sci. Comput. Program..

[28]  Bruno Woltzenlogel Paleo,et al.  The Inconsistency in Gödel's Ontological Argument: A Success Story for AI in Metaphysics , 2016, IJCAI.

[29]  Tobias Nipkow,et al.  A Proof Assistant for Higher-Order Logic , 2002 .

[30]  Sobel on Gödel’s Ontological Proof , 2006 .

[31]  J. Llewelyn I. Being and saying , 1984 .

[32]  Christoph Benzmüller,et al.  Can Computers Help to Sharpen our Understanding of Ontological Arguments , 2018 .