Extending the automated gastrointestinal analysis pipeline: Removal of invalid slow wave marks in gastric serosal recordings

Gastric contractions are governed by a bioelectrical event known as slow waves. High-resolution electrical mapping has recently been applied to study complex gastric slow wave spatiotemporal propagations in detail. As these methods are translated to clinical and experimental applications, it is evident that efficient and automated methods are a necessity for analysis. Despite automated methods to detect slow wave events, manual review and correction remains necessary due to the presence of experimental noise in the recordings. Manual deletion of invalid slow wave events is time consuming and inefficient. We have therefore developed an algorithm to eliminate invalid markers of slow waves, via the use of frequency and morphological analysis. The techniques were validated with experimental data using serosal gastric slow wave recordings from animals and humans with a sensitivity of 90% and specificity of 85%. It is anticipated these methods will facilitate analyzing high-resolution slow wave mapping data and accelerate clinical translation of electrical mapping to clinical and diagnostic gastroentrology.

[1]  Aapo Hyvärinen,et al.  New Approximations of Differential Entropy for Independent Component Analysis and Projection Pursuit , 1997, NIPS.

[2]  Andrew J. Pullan,et al.  Automated Gastric Slow Wave Cycle Partitioning and Visualization for High-resolution Activation Time Maps , 2010, Annals of Biomedical Engineering.

[3]  P. Nielsen,et al.  High-resolution Mapping of In Vivo Gastrointestinal Slow Wave Activity Using Flexible Printed Circuit Board Electrodes: Methodology and Validation , 2009, Annals of Biomedical Engineering.

[4]  R. McCallum,et al.  Gastric myoelectrical activity and gastric emptying in patients with functional dyspepsia , 1998, American Journal of Gastroenterology.

[5]  G. O’Grady,et al.  Mapping and modeling gastrointestinal bioelectricity: from engineering bench to bedside. , 2013, Physiology.

[6]  W. Lammers,et al.  Focal activities and re-entrant propagations as mechanisms of gastric tachyarrhythmias. , 2008, Gastroenterology.

[7]  Leo K. Cheng,et al.  A System and Method for Online High-Resolution Mapping of Gastric Slow-Wave Activity , 2014, IEEE Transactions on Biomedical Engineering.

[8]  G. O’Grady,et al.  Comparison of filtering methods for extracellular gastric slow wave recordings , 2013, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[9]  Leo K. Cheng,et al.  Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping. , 2010, American journal of physiology. Gastrointestinal and liver physiology.

[10]  Leo K. Cheng,et al.  Automated Classification and Identification of Slow Wave Propagation Patterns in Gastric Dysrhythmia , 2013, Annals of Biomedical Engineering.

[11]  A. Pullan,et al.  Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high‐resolution mapping , 2010, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[12]  Andrew J. Pullan,et al.  Improved signal processing techniques for the analysis of high resolution serosal slow wave activity in the stomach , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[13]  Leo K. Cheng,et al.  The gastrointestinal electrical mapping suite (GEMS): software for analyzing and visualizing high-resolution (multi-electrode) recordings in spatiotemporal detail , 2012, BMC Gastroenterology.

[14]  Andrew J. Pullan,et al.  Falling-Edge, Variable Threshold (FEVT) Method for the Automated Detection of Gastric Slow Wave Events in High-Resolution Serosal Electrode Recordings , 2010, Annals of Biomedical Engineering.

[15]  Andrew J. Pullan,et al.  An Improved Method for the Estimation and Visualization of Velocity Fields from Gastric High-Resolution Electrical Mapping , 2012, IEEE Transactions on Biomedical Engineering.

[16]  Andrew J. Pullan,et al.  Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. , 2012, Gastroenterology.

[17]  T. Y. El-Sharkawy,et al.  Multielectrode mapping of slow-wave activity in the isolated rabbit duodenum. , 1993, Journal of applied physiology.