Copula Analysis of Temporal Dependence Structure in Markov Modulated Poisson Process and Its Applications

The Markov Modulated Poisson Process (MMPP) has been extensively studied in random process theory and widely applied in various applications involving Poisson arrivals whose rate varies following a Markov process. Despite the rich literature on MMPP, very little is known on its intricate temporal dependence structure. No exact solution is available so far to capture the functional temporal dependence of MMPP at the stationary state over slotted times. This article tackles the above challenges with copula analysis. It not only presents a novel analytical framework to capture the temporal dependence of MMPP but also provides the exact copula-based solutions for single MMPP as well as the aggregate of independent MMPP. This theoretical contribution discloses functional dependence structure of MMPP. It also lays the foundation for many applications that rely on the temporal dependence of MMPP for adaptive control or predictive resource provisioning. We demonstrate case studies, with real-world trace data as well as simulation, to illustrate the practical significance of our analytical results.

[1]  Fang Dong,et al.  Copula Analysis of Latent Dependency Structure for Collaborative Auto-Scaling of Cloud Services , 2016, 2016 25th International Conference on Computer Communication and Networks (ICCCN).

[2]  Elvis Dieguez,et al.  On Ryde/spl acute/n's EM algorithm for estimating MMPPs , 2006, IEEE Signal Processing Letters.

[3]  Jaroslav Polec,et al.  Modeling Poisson Error Process on Wireless Channels , 2015, Int. J. Commun. Networks Inf. Secur..

[4]  Wolfgang Fischer,et al.  The Markov-Modulated Poisson Process (MMPP) Cookbook , 1993, Perform. Evaluation.

[5]  Bo Friis Nielsen,et al.  An application of superpositions of two state Markovian source to the modelling of self-similar behaviour , 1997, Proceedings of INFOCOM '97.

[6]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[7]  Qing Du A MONOTONICITY RESULT FOR A SINGLE-SERVER QUEUE SUBJECT TO A MARKOV-MODULATED POISSON PROCESS , 1995 .

[8]  Michael K. Pitt,et al.  Bayesian Inference for a Semi-Parametric Copula-based Markov Chain , 2014 .

[9]  Radim Jirousek,et al.  A short note on multivariate dependence modeling , 2013, Kybernetika.

[10]  Pravin K. Trivedi,et al.  Copula Modeling: An Introduction for Practitioners , 2007 .

[11]  Sangmin Lee,et al.  Analysis of an MMPP/G/1/K queue with queue length dependent arrival rates, and its application to preventive congestion control in telecommunication networks , 2008, Eur. J. Oper. Res..

[12]  Marcel F. Neuts,et al.  Structured Stochastic Matrices of M/G/1 Type and Their Applications , 1989 .

[13]  P. Embrechts,et al.  Chapter 8 – Modelling Dependence with Copulas and Applications to Risk Management , 2003 .

[14]  Nicola Blefari-Melazzi,et al.  Steady-state analysis of the MMPP/G/1/K queue , 1993, IEEE Trans. Commun..

[15]  Xiaohong Chen,et al.  Efficient Estimation of Copula-Based Semiparametric Markov Models , 2009, 0901.0751.

[16]  Martina Beil Modeling Dependencies among Financial Asset Returns Using Copulas , 2013 .

[17]  Gunter Bolch,et al.  Practical Performance Modeling: Application of the MOSEL Language , 2012 .

[18]  Paolo Giacomazzi Statistical Traffic Envelopes for Markov-Modulated Poisson Packet Sources , 2007, IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference.

[19]  Fang Dong,et al.  Copula analysis for statistical network calculus , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[20]  Bruno Rémillard,et al.  Copula-Based Semiparametric Models for Multivariate Time Series , 2011, J. Multivar. Anal..

[21]  Konstantin Avrachenkov,et al.  Distribution and dependence of extremes in network sampling processes , 2014, 2014 Tenth International Conference on Signal-Image Technology and Internet-Based Systems.

[22]  Eric Bouyé,et al.  Copulas for Finance - A Reading Guide and Some Applications , 2000 .

[23]  Daniel P. Heyman,et al.  Modeling multiple IP traffic streams with rate limits , 2003, TNET.

[24]  H. Okamura,et al.  Markovian Arrival Process Parameter Estimation With Group Data , 2009, IEEE/ACM Transactions on Networking.

[25]  Johnny W. Wong,et al.  Provisioning of Computing Resources for Web Applications under Time-Varying Traffic , 2014, 2014 IEEE 22nd International Symposium on Modelling, Analysis & Simulation of Computer and Telecommunication Systems.

[26]  Victor S. Frost,et al.  An algorithm for fitting MMPP to IP traffic traces , 2007, IEEE Communications Letters.

[27]  T. Rydén Parameter Estimation for Markov Modulated Poisson Processes , 1994 .

[28]  António Pacheco,et al.  Multiscale Fitting Procedure Using Markov Modulated Poisson Processes , 2003, Telecommun. Syst..

[29]  Natalia M. Markovich Nonparametric Analysis of Univariate Heavy-Tailed Data: Research and Practice , 2007 .

[30]  Thierry Roncalli,et al.  Which Copula is the Right One? , 2000 .

[31]  N. Markovich Nonparametric analysis of univariate heavy-tailed data , 2007 .

[32]  Sheldon M. Ross,et al.  Introduction to probability models , 1975 .

[33]  Bo Friis Nielsen,et al.  A Markovian approach for modeling packet traffic with long-range dependence , 1998, IEEE J. Sel. Areas Commun..

[34]  Volker Schmidt,et al.  A Parametric Copula Approach for Modelling Shortest-Path Trees in Telecommunication Networks , 2013, ASMTA.

[35]  Andrew J. Patton Copula Methods for Forecasting Multivariate Time Series , 2013 .

[36]  Kjersti Aas,et al.  Modelling the dependence structure of financial assets : A survey of four copulas , 2004 .

[37]  Paolo Giacomazzi,et al.  Closed-form analysis of end-to-end network delay with Markov-modulated Poisson and fluid traffic , 2009, Comput. Commun..

[38]  Malla Reddy Perati,et al.  Generalized Variance-Based Markovian Fitting for Self-Similar Traffic Modelling , 2005, IEICE Trans. Commun..

[39]  Marco Ajmone Marsan,et al.  Markov models of internet traffic and a new hierarchical MMPP model , 2005, Comput. Commun..

[40]  Natalia M. Markovich Modeling of dependence in a peer-to-peer video application , 2010, IWCMC.

[41]  FischerWolfgang,et al.  The Markov-modulated Poisson process (MMPP) cookbook , 1993 .

[42]  Robert J. Elliott,et al.  Discrete-Time Expectation Maximization Algorithms for Markov-Modulated Poisson Processes , 2008, IEEE Transactions on Automatic Control.

[43]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[44]  Johnny W. Wong,et al.  MMPP Characterization of Web Application Traffic , 2012, 2012 IEEE 20th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems.

[45]  Lothar Breuer,et al.  An EM Algorithm for Markovian Arrival Processes Observed at Discrete Times , 2010, MMB/DFT.

[46]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[47]  Stephen L. Scott,et al.  Detecting Network Intrusion Using a Markov Modulated Nonhomogeneous Poisson Process , 2000 .

[48]  Shoji Kasahara,et al.  Internet Traffic Modeling: Markovian Approach to Self-Similar Traffic and Prediction of Loss Probability for Finite Queues , 2001 .

[49]  Stephen Dawson,et al.  Markovian Workload Characterization for QoS Prediction in the Cloud , 2011, 2011 IEEE 4th International Conference on Cloud Computing.

[50]  R. Nelsen An Introduction to Copulas , 1998 .

[51]  Yulia Burkatovskaya,et al.  CUSUM Algorithms for Parameter Estimation in Queueing Systems with Jump Intensity of the Arrival Process , 2015 .

[52]  Padhraic Smyth,et al.  Learning to detect events with Markov-modulated poisson processes , 2007, TKDD.

[53]  T. Rydén An EM algorithm for estimation in Markov-modulated Poisson processes , 1996 .

[54]  António Pacheco,et al.  Modeling Self-similar Traffic through Markov Modulated Poisson Processes over Multiple Time Scales , 2003, HSNMC.

[55]  Mollaei Gharehajlu Mahmood,et al.  STATISTICAL ANALYSIS OF DIFFERENT TRAFFIC TYPES EFFECT ON QOS OF WIRELESS AD HOC NETWORKS , 2015 .

[56]  Yutaka Takahashi,et al.  Practical Time-Scale Fitting of Self-Similar Traffic with Markov-Modulated Poisson Process , 2001, Telecommun. Syst..

[57]  MengChu Zhou,et al.  A model reduction method for traffic described by MMPP with unknown rate limit , 2006, IEEE Communications Letters.

[58]  P. Naor,et al.  Queuing Problems with Heterogeneous Arrivals and Service , 1971, Oper. Res..

[59]  The simple econometrics of tail dependence , 2012 .

[60]  Peter G. Harrison,et al.  Adapting Hidden Markov Models for Online Learning , 2015, UKPEW.