Supervised and transductive multi-class segmentation using p-Laplacians and RKHS methods

This paper considers supervised multi-class image segmentation: from a labeled set of pixels in one image, we learn the segmentation and apply it to the rest of the image or to other similar images. We study approaches with p-Laplacians, (vector-valued) Reproducing Kernel Hilbert Spaces (RKHSs) and combinations of both. In all approaches we construct segment membership vectors. In the p-Laplacian model the segment membership vectors have to fulfill a certain probability simplex constraint. Interestingly, we could prove that this is not really a constraint in the case p=2 but is automatically fulfilled. While the 2-Laplacian model gives a good general segmentation, the case of the 1-Laplacian tends to neglect smaller segments. The RKHS approach has the benefit of fast computation. This direction is motivated by image colorization, where a given dab of color is extended to a nearby region of similar features or to another image. The connection between colorization and multi-class segmentation is explored in this paper with an application to medical image segmentation. We further consider an improvement using a combined method. Each model is carefully considered with numerical experiments for validation, followed by medical image segmentation at the end.

[1]  Yoon Mo Jung,et al.  Multiphase Image Segmentation via Modica-Mortola Phase Transition , 2007, SIAM J. Appl. Math..

[2]  Matthias Hein,et al.  Spectral clustering based on the graph p-Laplacian , 2009, ICML '09.

[3]  Peter Deuflhard,et al.  Numerische Mathematik. I , 2002 .

[4]  Guillermo Sapiro,et al.  Fast image and video colorization using chrominance blending , 2006, IEEE Transactions on Image Processing.

[5]  Saïd Amghibech,et al.  Eigenvalues of the Discrete p-Laplacian for Graphs , 2003, Ars Comb..

[6]  Matthias Hein,et al.  An Inverse Power Method for Nonlinear Eigenproblems with Applications in 1-Spectral Clustering and Sparse PCA , 2010, NIPS.

[7]  M. Fornasier Nonlinear projection digital image inpainting and restoration methods , 2004, math/0412112.

[8]  T. Chan,et al.  Primal dual algorithms for convex models and applications to image restoration, registration and nonlocal inpainting , 2010 .

[9]  Laurent Schwartz,et al.  Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés (Noyaux reproduisants) , 1964 .

[10]  C. Carmeli,et al.  VECTOR VALUED REPRODUCING KERNEL HILBERT SPACES OF INTEGRABLE FUNCTIONS AND MERCER THEOREM , 2006 .

[11]  T. Chan,et al.  Multiple level set methods with applications for identifying piecewise constant functions , 2004 .

[12]  G. Wahba,et al.  Some results on Tchebycheffian spline functions , 1971 .

[13]  Michael K. Ng,et al.  A Multiphase Image Segmentation Method Based on Fuzzy Region Competition , 2010, SIAM J. Imaging Sci..

[14]  Bang Công Vu,et al.  A splitting algorithm for dual monotone inclusions involving cocoercive operators , 2011, Advances in Computational Mathematics.

[15]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[17]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[19]  Guy Gilboa,et al.  Nonlocal Linear Image Regularization and Supervised Segmentation , 2007, Multiscale Model. Simul..

[20]  Xavier Bresson,et al.  Multi-class Transductive Learning Based on ℓ1 Relaxations of Cheeger Cut and Mumford-Shah-Potts Model , 2013, Journal of Mathematical Imaging and Vision.

[21]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[22]  G. B. Smith,et al.  Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images” , 1987 .

[23]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[24]  Arthur D. Szlam,et al.  Total variation and cheeger cuts , 2010, ICML 2010.

[25]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[26]  Charles A. Micchelli,et al.  On Learning Vector-Valued Functions , 2005, Neural Computation.

[27]  Thomas Brox,et al.  Level Set Based Image Segmentation with Multiple Regions , 2004, DAGM-Symposium.

[28]  Yuri Boykov,et al.  Globally optimal segmentation of multi-region objects , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[29]  Gabriele Steidl,et al.  Segmentation of images with separating layers by fuzzy c-means and convex optimization , 2012, J. Vis. Commun. Image Represent..

[30]  Xavier Bresson,et al.  TV-SVM: Total Variation Support Vector Machine for Semi-Supervised Data Classification , 2012, ArXiv.

[31]  Jan-Michael Frahm,et al.  Fast Global Labeling for Real-Time Stereo Using Multiple Plane Sweeps , 2008, VMV.

[32]  George Pedrick,et al.  Theory of reproducing kernels for Hilbert spaces of vector valued functions , 1957 .

[33]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .

[34]  Klaus Mueller,et al.  Transferring color to greyscale images , 2002, ACM Trans. Graph..

[35]  Xue-Cheng Tai,et al.  Global Minimization for Continuous Multiphase Partitioning Problems Using a Dual Approach , 2011, International Journal of Computer Vision.

[36]  Daniel Cremers,et al.  An algorithm for minimizing the Mumford-Shah functional , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[37]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[38]  Arthur D. Szlam,et al.  Diffusion wavelet packets , 2006 .

[39]  Max A. Viergever,et al.  Ridge-based vessel segmentation in color images of the retina , 2004, IEEE Transactions on Medical Imaging.

[40]  George Biros,et al.  A geodesic-active-contour-based variational model for short-axis cardiac MR image segmentation , 2013, Int. J. Comput. Math..

[41]  Simon Setzer,et al.  Operator Splittings, Bregman Methods and Frame Shrinkage in Image Processing , 2011, International Journal of Computer Vision.

[42]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[43]  Jing Yuan,et al.  Convex Multi-class Image Labeling by Simplex-Constrained Total Variation , 2009, SSVM.

[44]  Dani Lischinski,et al.  Colorization using optimization , 2004, SIGGRAPH 2004.

[45]  Harry Shum,et al.  Image segmentation by data driven Markov chain Monte Carlo , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[46]  Xuecheng Tai,et al.  Global Convergence of Subspace Correction Methods for Convex Optimization Problems , 1998 .

[47]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[48]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[49]  Anders P. Eriksson,et al.  Normalized Cuts Revisited: A Reformulation for Segmentation with Linear Grouping Constraints , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[50]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[51]  Josef Stoer,et al.  Numerische Mathematik 2 , 1990 .

[52]  G. Wahba Spline models for observational data , 1990 .

[53]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[54]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[55]  Yoram Singer,et al.  Efficient projections onto the l1-ball for learning in high dimensions , 2008, ICML '08.

[56]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[57]  Mikhail Belkin,et al.  Beyond the point cloud: from transductive to semi-supervised learning , 2005, ICML.

[58]  R. Shah,et al.  Least Squares Support Vector Machines , 2022 .

[59]  Sung Ha Kang,et al.  Image and Video Colorization Using Vector-Valued Reproducing Kernel Hilbert Spaces , 2010, Journal of Mathematical Imaging and Vision.

[60]  Xavier Bresson,et al.  Total Variation, Cheeger Cuts , 2010, ICML.

[61]  Andrew B. Kahng,et al.  Fast spectral methods for ratio cut partitioning and clustering , 1991, 1991 IEEE International Conference on Computer-Aided Design Digest of Technical Papers.

[62]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[63]  B. S. Manjunath,et al.  A biosegmentation benchmark for evaluation of bioimage analysis methods , 2009, BMC Bioinformatics.

[64]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[65]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[66]  R. Coifman,et al.  Diffusion Wavelets , 2004 .

[67]  Jinchao Xu,et al.  Global and uniform convergence of subspace correction methods for some convex optimization problems , 2002, Math. Comput..

[68]  Stuart James,et al.  Museum of Broadcast Communications Encyclopaedia of Television , 1997 .

[69]  P. L. Combettes,et al.  Primal-Dual Splitting Algorithm for Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-Sum Type Monotone Operators , 2011, Set-Valued and Variational Analysis.

[70]  Gabriel Peyré,et al.  Image Processing with Nonlocal Spectral Bases , 2008, Multiscale Model. Simul..

[71]  Caroline Petitjean,et al.  A review of segmentation methods in short axis cardiac MR images , 2011, Medical Image Anal..

[72]  Abderrahim Elmoataz,et al.  Partial differences as tools for filtering data on graphs , 2010, Pattern Recognit. Lett..

[73]  Bernhard Schölkopf,et al.  Regularization on Discrete Spaces , 2005, DAGM-Symposium.

[74]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[75]  Michael K. Ng,et al.  A Semisupervised Segmentation Model for Collections of Images , 2012, IEEE Transactions on Image Processing.