Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.)

[1]  M. Zaman-Allah,et al.  A conservative pattern of water use, rather than deep or profuse rooting, is critical for the terminal drought tolerance of chickpea , 2011, Journal of experimental botany.

[2]  R. Varshney,et al.  Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.) , 2011 .

[3]  M. Zaman-Allah,et al.  Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to the control of water use. , 2011, Functional plant biology : FPB.

[4]  S. N. Nigam,et al.  Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachishypogaea L.) , 2010, Theoretical and Applied Genetics.

[5]  R. Varshney,et al.  A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.) , 2010, Theoretical and Applied Genetics.

[6]  J. Ribaut,et al.  Molecular breeding in developing countries: challenges and perspectives. , 2010, Current opinion in plant biology.

[7]  J. Burstin,et al.  Genetic dissection of nitrogen nutrition in pea through a QTL approach of root, nodule, and shoot variability , 2010, Theoretical and Applied Genetics.

[8]  V. Vadez,et al.  Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit , 2010, Journal of experimental botany.

[9]  Xiaoping Chen,et al.  A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome , 2010, BMC Plant Biology.

[10]  S. Tabata,et al.  Mapping candidate QTLs related to plant persistency in red clover , 2010, Theoretical and Applied Genetics.

[11]  V. Vadez,et al.  Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.] , 2009, Journal of experimental botany.

[12]  S. N. Nigam,et al.  High level of natural variation in a groundnut (Arachis hypogaea L.) germplasm collection assayed by selected informative SSR markers , 2009 .

[13]  R. Varshney,et al.  Novel Genomic Tools and Modern Genetic and Breeding Approaches for Crop Improvement , 2009, Journal of Plant Biochemistry and Biotechnology.

[14]  S. N. Nigam,et al.  The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.) , 2009, Theoretical and Applied Genetics.

[15]  R. Bernardo Molecular Markers and Selection for Complex Traits in Plants: Learning from the Last 20 Years , 2008 .

[16]  F. Tardieu,et al.  ’ s Choice Series on the Next Generation of Biotech Crops Quantitative Trait Loci and Crop Performance under Abiotic Stress : Where Do We Stand ? , 2008 .

[17]  R. Varshney,et al.  Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea) , 2008, BMC Plant Biology.

[18]  Satoshi Tabata,et al.  Genotype Matrix Mapping: Searching for Quantitative Trait Loci Interactions in Genetic Variation in Complex Traits , 2007, DNA research : an international journal for rapid publication of reports on genes and genomes.

[19]  S. N. Nigam,et al.  Variation in transpiration efficiency and its related traits in a groundnut (Arachis hypogaea L.) mapping population , 2007 .

[20]  G. Burow,et al.  Molecular Characterization of the U.S. Peanut Mini Core Collection Using Microsatellite Markers , 2007 .

[21]  J. Jannink Identifying Quantitative Trait Locus by Genetic Background Interactions in Association Studies , 2007, Genetics.

[22]  Jean-Marcel Ribaut,et al.  Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. , 2006, Journal of experimental botany.

[23]  Akhilesh K Tyagi,et al.  Advances in cereal genomics and applications in crop breeding. , 2006, Trends in biotechnology.

[24]  O. Jeong,et al.  Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseongbyeo , 2006, Theoretical and Applied Genetics.

[25]  A. Blum Drought resistance, water-use efficiency, and yield potential-are they compatible, dissonant, or mutually exclusive? , 2005 .

[26]  S. N. Nigam,et al.  Efficiency of physiological trait-based and empirical selection approaches for drought tolerance in groundnut , 2005 .

[27]  K. Edwards,et al.  A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.) , 2004, Theoretical and Applied Genetics.

[28]  S. Tanksley,et al.  Advanced backcross QTL analysis of a Lycopersicon esculentum × L. pennellii cross and identification of possible orthologs in the Solanaceae , 2004, Theoretical and Applied Genetics.

[29]  P. Langridge,et al.  Application of SSR markers in the construction of Australian barley genetic maps , 2003 .

[30]  P. Langridge,et al.  A consensus map of barley integrating SSR, RFLP, and AFLP markers , 2003 .

[31]  Michael J. Thomson,et al.  Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson , 2003, Theoretical and Applied Genetics.

[32]  A. Condon,et al.  Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat , 2002 .

[33]  Honggang Zheng,et al.  Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species , 2001, Theoretical and Applied Genetics.

[34]  R. Varshney,et al.  Molecular markers and their applications in wheat breeding , 1999 .

[35]  Sharon E. Mitchell,et al.  Discovery and Characterization of Polymorphic Simple Sequence Repeats (SSRs) in Peanut , 1999 .

[36]  S. Tanksley,et al.  Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. , 1998, Genetics.

[37]  D. Hoisington,et al.  Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies , 1997, Theoretical and Applied Genetics.

[38]  D. Hoisington,et al.  Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval , 1996, Theoretical and Applied Genetics.

[39]  Z. Zeng Precision mapping of quantitative trait loci. , 1994, Genetics.

[40]  Z B Zeng,et al.  Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[41]  P. Stam,et al.  Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. , 1993 .

[42]  A. Paterson,et al.  Genome mapping in plants , 1993 .

[43]  M. Daly,et al.  MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. , 1987, Genomics.

[44]  L. Beckman,et al.  Genetics of Leucine Aminopeptidase Isozymes in Maize. , 1964, Genetics.

[45]  Zhao-Bang Zeng,et al.  Windows QTL Cartographer 2·5 , 2011 .

[46]  T. Sinclair,et al.  Genotypic variation in peanut for transpiration response to vapor pressure deficit , 2010 .

[47]  Stefano Lonardi,et al.  On the accurate construction of consensus genetic maps. , 2008, Computational systems bioinformatics. Computational Systems Bioinformatics Conference.

[48]  Andreas Graner,et al.  Genic microsatellite markers in plants: features and applications. , 2005, Trends in biotechnology.

[49]  R. Pittman,et al.  Genetic diversity analysis in valencia peanut (Arachis hypogaea L.) using microsatellite markers. , 2004, Cellular & molecular biology letters.

[50]  C. K. Kvien,et al.  Identification of peanut genotypes with improved drought avoidance traits , 1995 .

[51]  R. Rao,et al.  Stability of the relationship between specific leaf area and carbon isotope discrimination across environments in peanut , 1994 .

[52]  G. Farquhar,et al.  Correlation Between Water-Use Efficiency and Carbon Isotope Discrimination in Diverse Peanut (Arachis) Germplasm , 1986 .

[53]  D. D. Kosambi The estimation of map distances from recombination values. , 1943 .