Inverse cascade anomalies in fourth-order Leith models

We analyze a family of fourth-order non-linear diffusion models corresponding to local approximations of four-wave kinetic equations of weak wave turbulence. We focus on a class of parameters for which a dual cascade behavior is expected with an infrared finite-time singularity associated to inverse transfer of waveaction. This case is relevant for wave turbulence arising in the nonlinear Schrödinger model and for the gravitational waves in the Einstein’s vacuum field model. We show that inverse transfer is not described by a scaling of the constant-flux solution but has an anomalous scaling. We compute the anomalous exponents and analyze their origin using the theory of dynamical systems.

[1]  K. Hasselmann,et al.  Computations and Parameterizations of the Nonlinear Energy Transfer in a Gravity-Wave Specturm. Part II: Parameterizations of the Nonlinear Energy Transfer for Application in Wave Models , 1985 .

[2]  C. Leith Diffusion Approximation for Two‐Dimensional Turbulence , 1968 .

[3]  S. Nazarenko,et al.  Anomalous spectral laws in differential models of turbulence , 2015, 1502.06750.

[4]  T. Lee On some statistical properties of hydrodynamical and magneto-hydrodynamical fields , 1952 .

[5]  Alan C. Newell,et al.  Wave Turbulence , 2011 .

[6]  D. Lilly Two-dimensional turbulence generated by energy sources at two scales , 1989 .

[7]  S. Nazarenko,et al.  Differential model for 2D turbulence , 2006 .

[8]  S. Nazarenko,et al.  Nonlinear diffusion models for gravitational wave turbulence , 2018, Physica D: Nonlinear Phenomena.

[9]  C. E. Leith,et al.  Diffusion Approximation to Inertial Energy Transfer in Isotropic Turbulence , 1967 .

[10]  Yves Pomeau,et al.  Kinetic theory and Bose–Einstein condensation , 2004 .

[11]  B. V. Semisalov,et al.  Numerical analysis of a self-similar turbulent flow in Bose-Einstein condensates , 2021, Commun. Nonlinear Sci. Numer. Simul..

[12]  S. Nazarenko,et al.  Turbulence of Weak Gravitational Waves in the Early Universe. , 2017, Physical review letters.

[13]  S. Kurien,et al.  Leith diffusion model for homogeneous anisotropic turbulence , 2016 .

[14]  Differential approximation for Kelvin wave turbulence , 2005, cond-mat/0511136.

[15]  Pearu Peterson,et al.  F2PY: a tool for connecting Fortran and Python programs , 2009, Int. J. Comput. Sci. Eng..

[16]  T. Clark,et al.  Reassessment of the classical turbulence closures: the Leith diffusion model , 2009 .

[17]  Self-similar solution in the Leith model of turbulence: anomalous power law and asymptotic analysis , 2014 .

[18]  Ciro S. Campolina,et al.  Chaotic Blowup in the 3D Incompressible Euler Equations on a Logarithmic Lattice. , 2018, Physical review letters.

[19]  S. Nazarenko,et al.  Self-similar formation of the Kolmogorov spectrum in the Leith model of turbulence , 2016, 1612.01311.

[20]  F. Gantmacher,et al.  Applications of the theory of matrices , 1960 .

[21]  Ö. Gürcan,et al.  A differential approximation model for passive scalar turbulence , 2019, Journal of Physics A: Mathematical and Theoretical.

[22]  Damien Vandembroucq,et al.  Improved shell model of turbulence , 1998, chao-dyn/9803025.

[23]  Alan C. Newell,et al.  Non-stationary spectra of local wave turbulence , 2003, physics/0304076.

[24]  S. Nazarenko,et al.  The focusing problem for the Leith model of turbulence: a self-similar solution of the third kind , 2019, Journal of Physics A: Mathematical and Theoretical.

[25]  R. Balescu,et al.  Anisotropic electrostatic turbulence and zonal flow generation , 2005 .

[26]  R. Kraichnan Inertial Ranges in Two‐Dimensional Turbulence , 1967 .

[27]  S. Nazarenko,et al.  Self-similar evolution of Alfven wave turbulence , 2017 .

[28]  C. Connaughton,et al.  Warm cascades and anomalous scaling in a diffusion model of turbulence. , 2004, Physical review letters.

[29]  V. Grebenev,et al.  Complementary remarks to properties of the energy spectrum in Leith's model of turbulence , 2017 .