Electronic structure of Li2O2 {0001} surfaces

The surface properties of the Li2O2 discharge phase are expected to impact strongly the capacity, rate capability, and rechargeability of Li-oxygen batteries. Prior calculations have suggested that the presence of half-metallic surface states in Li2O2 may mitigate electrical passivation resulting from the growth of Li2O2, which is a bulk insulator. Here we revisit the electronic structure of bulk Li2O2 and the dominant Li2O2 {0001} surface by comparing results obtained with the PBE GGA functional, the HSE06 hybrid functional, and quasiparticle GW methods. Our results suggest that the bulk band gap lies between the value predicted by the G0W0 method, 5.15 eV, and the value predicted by the self-consistent quasiparticle GW (scGW) approximation, 6.37 eV. The PBE, HSE06, and scGW methods agree that the most stable surface, an oxygen-rich {0001} termination, is indeed half-metallic. This result supports the notion that the electronic structure of surfaces may play an important role in understanding performance limitations in Li-oxygen batteries.

[1]  H. Zhang,et al.  Ab initio calculations of structural, elastic and electronic properties of Li2O2 , 2007 .

[2]  G. Graff,et al.  Investigation of the rechargeability of Li–O2 batteries in non-aqueous electrolyte , 2011 .

[3]  Donald J. Siegel,et al.  Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. , 2012, Journal of the American Chemical Society.

[4]  P. W. Tasker,et al.  The stability of ionic crystal surfaces , 1979 .

[5]  Su-Huai Wei,et al.  Implications of the Formation of Small Polarons in Li2O2 for Li-Air Batteries , 2012 .

[6]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[7]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[8]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[9]  Shyue Ping Ong,et al.  First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery , 2011, Physical Review B.

[10]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[11]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[12]  T. Ishihara,et al.  Pd / MnO2 Air Electrode Catalyst for Rechargeable Lithium/Air Battery , 2010 .

[13]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[14]  Hubert A. Gasteiger,et al.  The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries , 2010 .

[15]  J. Bass,et al.  Communication: strong excitonic and vibronic effects determine the optical properties of Li2O2. , 2011, The Journal of chemical physics.

[16]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[17]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[18]  Jeffrey Read,et al.  Discharge characteristic of a non-aqueous electrolyte Li/O2 battery , 2010 .

[19]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[20]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[21]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[22]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[23]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[24]  G. Kresse,et al.  Accurate quasiparticle spectra from self-consistent GW calculations with vertex corrections. , 2007, Physical review letters.

[25]  Georg Kresse,et al.  Self-consistent G W calculations for semiconductors and insulators , 2007 .

[26]  Paul Albertus,et al.  Batteries for electric and hybrid-electric vehicles. , 2010, Annual review of chemical and biomolecular engineering.

[27]  N. G. Kravchenko,et al.  The electronic structure of alkali metal oxides , 2010 .

[28]  P. Bruce,et al.  An O2 cathode for rechargeable lithium batteries: The effect of a catalyst , 2007 .

[29]  Fuminori Mizuno,et al.  Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes , 2010 .

[30]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[31]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[32]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[33]  Sharon L. Blair,et al.  High-Capacity Lithium–Air Cathodes , 2009 .

[34]  Shyue Ping Ong,et al.  Low hole polaron migration barrier in lithium peroxide , 2012 .

[35]  Kang Xu,et al.  Reaction mechanisms for the limited reversibility of Li–O2 chemistry in organic carbonate electrolytes , 2011 .

[36]  Tejs Vegge,et al.  The role of transition metal interfaces on the electronic transport in lithium–air batteries , 2011 .

[37]  T. Ishihara,et al.  Mesoporous α-MnO2/Pd catalyst air electrode for rechargeable lithium–air battery , 2011 .

[38]  J. Gilman,et al.  Nanotechnology , 2001 .

[39]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[40]  Ji‐Guang Zhang,et al.  Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate electrolytes , 2011 .

[41]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[42]  Jasim Ahmed,et al.  A Critical Review of Li/Air Batteries , 2011 .

[43]  Yang Shao-Horn,et al.  The discharge rate capability of rechargeable Li–O2 batteries , 2011 .

[44]  G. Kresse,et al.  Implementation and performance of the frequency-dependent GW method within the PAW framework , 2006 .

[45]  J. Nørskov,et al.  Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery. , 2010, The Journal of chemical physics.

[46]  G. Scuseria,et al.  Accurate treatment of solids with the HSE screened hybrid , 2011 .

[47]  Jeffrey Read,et al.  Characterization of the Lithium/Oxygen Organic Electrolyte Battery , 2002 .

[48]  Boris Kozinsky,et al.  Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling , 2011 .

[49]  J. Dahn,et al.  The Electrochemical Displacement Reaction of Lithium with Metal Oxides , 2001 .

[50]  R M Shelby,et al.  Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. , 2011, The journal of physical chemistry letters.

[51]  M. Shishkin,et al.  Quasiparticle band structure based on a generalized Kohn-Sham scheme , 2007 .

[52]  J. Nørskov,et al.  Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. , 2011, The Journal of chemical physics.

[53]  Sanjeev Mukerjee,et al.  Rechargeable Lithium/TEGDME- LiPF6 ∕ O2 Battery , 2011 .

[54]  N. Seriani Ab initio thermodynamics of lithium oxides: from bulk phases to nanoparticles , 2009, Nanotechnology.

[55]  Zhimin Xue,et al.  Electrochemistry , 2012, Proceedings of the National Academy of Sciences.

[56]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[57]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[58]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[59]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[60]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[61]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.