Analysis of a generalised expectation–maximisation algorithm for Gaussian mixture models: a control systems perspective

The expectation–maximisation (EM) algorithm is one of the most popular methods used to solve the problem of parametric distribution-based clustering in unsupervised learning. In this paper, we prop...

[1]  T. Moon The expectation-maximization algorithm , 1996, IEEE Signal Process. Mag..

[2]  Alfred O. Hero,et al.  Ieee Transactions on Image Processing: to Appear Penalized Maximum-likelihood Image Reconstruction Using Space-alternating Generalized Em Algorithms , 2022 .

[3]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[4]  Robert D. Nowak,et al.  Distributed EM algorithms for density estimation and clustering in sensor networks , 2003, IEEE Trans. Signal Process..

[5]  Alfred O. Hero,et al.  On EM algorithms and their proximal generalizations , 2008, 1201.5912.

[6]  Martin J. Wainwright,et al.  Statistical guarantees for the EM algorithm: From population to sample-based analysis , 2014, ArXiv.

[7]  Alfred O. Hero,et al.  Kullback proximal algorithims for maximum-likelihood estimation , 2000, IEEE Trans. Inf. Theory.

[8]  Brendan J. Frey,et al.  Joint estimation of noise and channel distortion in a generalized EM framework , 2001, IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01..

[9]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[10]  Benjamin Recht,et al.  Analysis and Design of Optimization Algorithms via Integral Quadratic Constraints , 2014, SIAM J. Optim..

[11]  Alejandro Ribeiro,et al.  Analysis of Optimization Algorithms via Integral Quadratic Constraints: Nonstrongly Convex Problems , 2017, SIAM J. Optim..

[12]  Sérgio Pequito,et al.  Convergence of the Expectation-Maximization Algorithm Through Discrete-Time Lyapunov Stability Theory , 2018, 2019 American Control Conference (ACC).

[13]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[14]  Zoubin Ghahramani,et al.  Optimization with EM and Expectation-Conjugate-Gradient , 2003, ICML.

[15]  L. Jay,et al.  A Note on Q-order of Convergence , 2001 .

[16]  Michael I. Jordan,et al.  On Convergence Properties of the EM Algorithm for Gaussian Mixtures , 1996, Neural Computation.