THU Face Database for Real-Time Automatic Video Scoring Model

With the rapid development of electronic techniques, the Internet video services have already covered billions of users and become the mainstream media and major marketing channel in recent years. Along with the increasing importance of video, peoples interest in video have becoming far more important and influential. Still, there is no real-time video evaluation system reflect people’s interest Meter. This paper aims at build a facial video database providing standardized test video sequences, which is also an open database for any research related to facial expression and interest meter. Furthermore, Backpropagation (BP) neural network and Self organizing Feature Map (SOFM) neural network are used to establish the video scoring model. Our database contains over 1000 videos from 82 subjects, each frame of which is processed into a recognized facial expression. Simulation results show that the accuracy of our automatic video method can reach 85.6% based on our facial video database. Free examples can be downloaded at http://www.facedbv2.com.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Glaucya Maria Vicente Madazio Diagrama de desvio fonatório na clínica vocal , 2009 .

[3]  Morten Nielsen,et al.  On the Construction and Frequency Localization of Finite Orthogonal Quadrature Filters , 2001, J. Approx. Theory.

[4]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[5]  Ana Inês Dâmaso Tavares Avaliação percetiva da voz: GRBAS e CAPE-V , 2014 .

[6]  Susana Alexandre Vaz dos Santos Freitas,et al.  avaliação acústica e áudio percetiva na caracterização da voz humana , 2013 .

[7]  Lotfi Salhi,et al.  Voice Disorders Identification Using Hybrid Approach: Wavelet Analysis and Multilayer Neural Networks , 2008 .

[8]  Léslie Piccolotto Ferreira,et al.  Voice disorders in teachers: self-report, auditory-perceptive assessment of voice and vocal fold assessment Distúrbio de voz em professores: autorreferência, avaliação perceptiva da voz e das pregas vocais , 2012 .

[9]  Binh Nguyen,et al.  Wavelet transform and adaptive arithmetic coding techniques for EEG lossy compression , 2017, 2017 International Joint Conference on Neural Networks (IJCNN).

[10]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[11]  P Carding,et al.  Formal perceptual evaluation of voice quality in the United Kingdom , 2000, Logopedics, phoniatrics, vocology.

[12]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[13]  Francesco Carlo Morabito,et al.  Wavelet coherence-based clustering of EEG signals to estimate the brain connectivity in absence epileptic patients , 2017, 2017 International Joint Conference on Neural Networks (IJCNN).

[14]  Marley M. B. R. Vellasco,et al.  Ensemble of classifiers applied to motor imagery task classification for BCI applications , 2017, 2017 International Joint Conference on Neural Networks (IJCNN).

[15]  Paulo César Cortez,et al.  Wavelet transform and artificial neural networks applied to voice disorders identification , 2011, 2011 Third World Congress on Nature and Biologically Inspired Computing.

[16]  Fernando A. Gomide,et al.  Redes neurais artificiais para engenharia e ciências aplicadas: curso prático , 2012 .

[17]  Juan F. Ramirez-Villegas,et al.  Wavelet packet energy, Tsallis entropy and statistical parameterization for support vector-based and neural-based classification of mammographic regions , 2012, Neurocomputing.

[18]  Ronald W. Schafer,et al.  Theory and Applications of Digital Speech Processing , 2010 .

[19]  Roberta de Paula Araújo Perfil dos beneficiários do INSS em auxílio-doença por distúrbios benignos da voz , 2014 .