Extraction of Spectral Information from Hyperspectral Data and Application of Hyperspectral Imaging for Food and Agricultural Products

Hyperspectral imaging is built with the aggregation of imaging, spectroscopy and radiometric techniques. This technique observes the sample behaviour when it is exposed to light and interprets the properties of the biological samples. As hyperspectral imaging helps in interpreting the sample at the molecular level, it can distinguish very minute changes in the sample composition from its scatter properties. Hyperspectral data collection depends on several parameters such as electromagnetic spectrum wavelength range, imaging mode and imaging system. Spectral data acquired using a hyperspectral imaging system contain variations due to external factors and imaging components. Moreover, food samples are complex matrices with conditions of surface and internal heterogeneities, which may lead to variations in acquired data. Hence, before extracting information, these variations and noises must be reduced from the data using reference-dependent or reference-independent spectral pre-processing techniques. Using of the entire hyperspectral data for information extraction is tedious and time-consuming. In order to overcome this, exploratory data analysis techniques are used to select crucial wavelengths from the excessive hyperspectral data. Using appropriate chemometric techniques (supervised or unsupervised learning techniques) on this pre-processed hyperspectral data, qualitative or quantitative information from sample can be obtained. Qualitative information for analysing of the chemical composition, detecting of the defects and determining the purity of the food product can be extracted using discriminant analysis techniques. Quantitative information including variation in chemical constituents and contamination levels in food and agricultural sample can be extracted using categorical regression techniques. In combination with appropriate spectra pre-processing and chemometric technique, hyperspectral imaging stands out as an advanced quality evaluation system for food and agricultural products.

[1]  Fred Godtliebsen,et al.  Automatic nematode detection in cod fillets (Gadus morhua L.) by hyperspectral imaging , 2012 .

[2]  Lu Wang,et al.  Soluble Solids Content and pH Prediction and Maturity Discrimination of Lychee Fruits Using Visible and Near Infrared Hyperspectral Imaging , 2015, Food Analytical Methods.

[3]  Terje V. Karstang,et al.  Optimized scaling. A novel approach to linear calibration with closed data sets , 1992 .

[4]  Alan M. Lefcourt,et al.  A novel integrated PCA and FLD method on hyperspectral image feature extraction for cucumber chilling damage inspection , 2004 .

[5]  Dolores Pérez-Marín,et al.  Non-destructive determination of quality parameters in nectarines during on-tree ripening and postharvest storage , 2009 .

[6]  I. Zayas DISCRIMINATION BETWEEN ARTHUR AND ARKAN WHEAT BY IMAGE ANALYSIS , 1985 .

[7]  D. Jayas,et al.  Identification of wheat classes using wavelet features from near infrared hyperspectral images of bulk samples. , 2009 .

[8]  P. Honeine,et al.  Supervised Nonlinear Unmixing of Hyperspectral Images Using a Pre-image Methods , 2013, New Concepts in Imaging: Optical and Statistical Models.

[9]  Moon S. Kim,et al.  Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations , 2004 .

[10]  Jun-Hu Cheng,et al.  Mapping moisture contents in grass carp (Ctenopharyngodon idella) slices under different freeze drying periods by Vis-NIR hyperspectral imaging , 2017 .

[11]  Yong He,et al.  Application of Hyperspectral Imaging and Chemometric Calibrations for Variety Discrimination of Maize Seeds , 2012, Sensors.

[12]  H. Büning-Pfaue Analysis of water in food by near infrared spectroscopy , 2003 .

[13]  Hiroshi Okamoto,et al.  Mapping the spatial distribution of botanical composition and herbage mass in pastures using hyperspectral imaging , 2012 .

[14]  A. Giebel,et al.  Early detection of Fusarium infection in wheat using hyper-spectral imaging , 2011 .

[15]  Yang Tao,et al.  Hyperspectral Image Classification Methods , 2010 .

[16]  V. Bellon-Maurel,et al.  Determining Vitreousness of Durum Wheat Kernels Using near Infrared Hyperspectral Imaging , 2006 .

[17]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[18]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[19]  Bruce R. Kowalski,et al.  Piece-Wise Multiplicative Scatter Correction Applied to Near-Infrared Diffuse Transmittance Data from Meat Products , 1993 .

[20]  P. Dardenne,et al.  Online detection and quantification of ergot bodies in cereals using near infrared hyperspectral imaging , 2012, Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment.

[21]  Erik Johansson,et al.  Unlocking interpretation in near infrared multivariate calibrations by orthogonal partial least squares. , 2009, Analytical chemistry.

[22]  Jasper G. Tallada,et al.  Predicting Maturity Quality Parameters of Strawberries Using Hyperspectral Imaging , 2004 .

[23]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[24]  Takashi Kataoka,et al.  Image Segmentation between Crop and Weed using Hyperspectral Imaging for Weed Detection in Soybean Field , 2008 .

[25]  Thomas F. Burks,et al.  Citrus black spot detection using hyperspectral image analysis , 2013 .

[26]  Christian Jutten,et al.  Space or time adaptive signal processing by neural network models , 1987 .

[27]  M. S. Kim,et al.  MULTISPECTRAL DETECTION OF FECAL CONTAMINATION ON APPLES BASED ON HYPERSPECTRAL IMAGERY: PART I. APPLICATION OF VISIBLE AND NEAR–INFRARED REFLECTANCE IMAGING , 2002 .

[28]  A. Mahadevan-Jansen,et al.  Automated Method for Subtraction of Fluorescence from Biological Raman Spectra , 2003, Applied spectroscopy.

[29]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[30]  Dipo Theophilus Akomolafe,et al.  Comparative study of biological and artificial neural networks , 2013 .

[31]  José Manuel Amigo,et al.  Practical issues of hyperspectral imaging analysis of solid dosage forms , 2010, Analytical and bioanalytical chemistry.

[32]  Jens Petter Wold,et al.  On-line and non-destructive measurement of core temperature in heat treated fish cakes by NIR hyperspectral imaging , 2016 .

[33]  W. R. Windham,et al.  Hyperspectral Imaging for Detecting Fecal and Ingesta Contaminants on Poultry Carcasses , 2002 .

[34]  Pat Langley,et al.  An Analysis of Bayesian Classifiers , 1992, AAAI.

[35]  D. Givens,et al.  The principles, practices and some future applications of near infrared spectroscopy for predicting the nutritive value of foods for animals and humans , 1997, Nutrition Research Reviews.

[36]  M. Borengasser,et al.  Hyperspectral Remote Sensing: Principles and Applications , 2007 .

[37]  H. Poilvé,et al.  Hyperspectral Imaging and Stress Mapping in Agriculture , 1998 .

[38]  Maohua Wang,et al.  Quantitative Determination of Onion Internal Quality Using Reflectance, Interactance, and Transmittance Modes of Hyperspectral Imaging , 2013 .

[39]  R. Barnes,et al.  Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra , 1989 .

[40]  Gamal ElMasry,et al.  Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef , 2012 .

[41]  J. Pierna,et al.  NIR hyperspectral imaging spectroscopy and chemometrics for the detection of undesirable substances in food and feed , 2012 .

[42]  Christopher D. Brown,et al.  Derivative Preprocessing and Optimal Corrections for Baseline Drift in Multivariate Calibration , 2000 .

[43]  J. Qin,et al.  Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence , 2009 .

[44]  Hiroshi Okamoto,et al.  Field mapping of chemical composition of forage using hyperspectral imaging in a grass meadow , 2008 .

[45]  Lorenzo León,et al.  Non-destructive assessment of olive fruit ripening by portable near infrared spectroscopy , 2011 .

[46]  Colm P. O'Donnell,et al.  Hyperspectral imaging – an emerging process analytical tool for food quality and safety control , 2007 .

[47]  Gamal ElMasry,et al.  Application of NIR hyperspectral imaging for discrimination of lamb muscles , 2011 .

[48]  Hongbin Pu,et al.  Nondestructive Measurements of Freezing Parameters of Frozen Porcine Meat by NIR Hyperspectral Imaging , 2016, Food and Bioprocess Technology.

[49]  S. Wold,et al.  Orthogonal projections to latent structures (O‐PLS) , 2002 .

[50]  Stephen J. Symons,et al.  Using a Short Wavelength Infrared (SWIR) hyperspectral imaging system to predict alpha amylase activity in individual Canadian western wheat kernels , 2009 .

[51]  Moon S. Kim,et al.  Detection of Fecal Contamination on Cantaloupes Using Hyperspectral Fluorescence Imagery , 2005 .

[52]  H. Martens,et al.  Extended multiplicative signal correction and spectral interference subtraction: new preprocessing methods for near infrared spectroscopy. , 1991, Journal of pharmaceutical and biomedical analysis.

[53]  Chris H. Q. Ding,et al.  K-means clustering via principal component analysis , 2004, ICML.

[54]  Y. R. Chen,et al.  HYPERSPECTRAL REFLECTANCE AND FLUORESCENCE IMAGING SYSTEM FOR FOOD QUALITY AND SAFETY , 2001 .

[55]  Thomas F. Schatzki,et al.  Defect detection in apples by means of x-ray imaging , 1996, Other Conferences.

[56]  Chavdar Levkov,et al.  Removal of power-line interference from the ECG: a review of the subtraction procedure , 2005, Biomedical engineering online.

[57]  L. Bodria,et al.  Apples Nutraceutic Properties Evaluation Through a Visible and Near-Infrared Portable System , 2013, Food and Bioprocess Technology.

[58]  Gamal ElMasry,et al.  Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. , 2013, Talanta.

[59]  Zhuo Georgia Chen,et al.  Detection of cancer metastasis using a novel macroscopic hyperspectral method , 2012, Medical Imaging.

[60]  Qiang Zhang,et al.  Tensor methods for hyperspectral data analysis: a space object material identification study. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[61]  Paul Allen,et al.  Prediction of moisture, color and pH in cooked, pre-sliced turkey hams by NIR hyperspectral imaging system , 2013 .

[62]  Donald S Borrett,et al.  Evolutionary autonomous agents and the nature of apraxia , 2005, Biomedical engineering online.

[63]  W. S. Lee,et al.  Green citrus detection using hyperspectral imaging , 2009 .

[64]  Z. Korotkaya,et al.  INDEPENDENT COMPONENT ANALYSIS IN SPECTRAL IMAGES , 2003 .

[65]  Ning Wang,et al.  Studies on banana fruit quality and maturity stages using hyperspectral imaging , 2012 .

[66]  Paul J. Williams,et al.  Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis. , 2009, Analytica chimica acta.

[67]  Federico Girosi,et al.  Training support vector machines: an application to face detection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[68]  Arno Formella,et al.  Non-destructive Detection of Hollow Heart in Potatoes Using Hyperspectral Imaging , 2011, CAIP.

[69]  Hiroshi Okamoto,et al.  Estimation of Chemical Composition of Grass in Meadows using Hyperspectral Imaging , 2008 .

[70]  Kristin Bowen Detection of Fecal Contamination using Molecular Methods , 2016 .

[71]  Yao-Ze Feng,et al.  Determination of total viable count (TVC) in chicken breast fillets by near-infrared hyperspectral imaging and spectroscopic transforms. , 2013, Talanta.

[72]  Renfu Lu,et al.  Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content , 2011 .

[73]  Noel D.G. White,et al.  Detection of insect-damaged wheat kernels using near-infrared hyperspectral imaging , 2009 .

[74]  Renfu Lu,et al.  Detection of bruises on apples using near-infrared hyperspectral imaging , 2003 .

[75]  V. Chelladurai,et al.  Detection of infestation by Callosobruchus maculatus in mung bean using near-infrared hyperspectral imaging , 2013 .

[76]  Guodong Guo,et al.  Support vector machines for face recognition , 2001, Image Vis. Comput..

[77]  Peter N. Schaare,et al.  A Versatile near Infrared Imaging Spectrometer , 1999 .

[78]  Margarita Ruiz-Altisent,et al.  Monitoring spinach shelf-life with hyperspectral image through packaging films , 2013 .

[79]  Yud-Ren Chen,et al.  Hyperspectral imaging for safety inspection of food and agricultural products , 1999, Other Conferences.

[80]  Renfu Lu,et al.  Prediction of olive quality using FT-NIR spectroscopy in reflectance and transmittance modes , 2009 .

[81]  Colm P. O'Donnell,et al.  The potential of visible-near infrared hyperspectral imaging to discriminate between casing soil, enzymatic browning and undamaged tissue on mushroom (Agaricus bisporus) surfaces , 2011 .

[82]  D. Gauguier,et al.  Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. , 2005, Analytical chemistry.

[83]  José Manuel Amigo,et al.  Study of pharmaceutical samples by NIR chemical-image and multivariate analysis , 2008 .

[84]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[85]  R. Sanderson,et al.  The Link between Multiplicative Scatter Correction (MSC) and Standard Normal Variate (SNV) Transformations of NIR Spectra , 1994 .

[86]  Renfu Lu,et al.  OPTIMAL WAVELENGTH SELECTION FOR HYPERSPECTRAL SCATTERING PREDICTION OF APPLE FIRMNESS AND SOLUBLE SOLIDS CONTENT , 2010 .

[87]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[88]  James R. Mansfield,et al.  Emerging Technology: Hyperspectral Imaging: , 2004 .

[89]  M. Ngadi,et al.  Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry , 2007 .

[90]  Chenghai Yang,et al.  A high-resolution airborne four-camera imaging system for agricultural remote sensing , 2012 .

[91]  Bosoon Park,et al.  Hyperspectral Imaging Technology in Food and Agriculture , 2015 .

[92]  A. Peirs,et al.  Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review , 2007 .

[93]  R. Hartley,et al.  Detection of bound ferulic acid in cell walls of the Gramineae by ultraviolet fluorescence microscopy , 1976, Nature.

[94]  Fred Godtliebsen,et al.  Ridge detection with application to automatic fish fillet inspection , 2009 .

[95]  Min Huang,et al.  Wavelength Selection of Hyperspectral Scattering Image Using New Semi-supervised Affinity Propagation for Prediction of Firmness and Soluble Solid Content in Apples , 2013, Food Analytical Methods.

[96]  Renfu Lu,et al.  Detection of fruit fly infestation in pickling cucumbers using a hyperspectral reflectance/transmittance imaging system , 2013 .

[97]  B. D. Ripley,et al.  Neural networks for chemists. An introduction, Jure Zupan and Johann Gasteiger, VCH, Weinheim, 1993, ISBN 3‐527‐28603‐9 (soft cover), 3‐527‐28592‐X (hard cover), 305 pp., £28 (soft), £57 (hard) , 1994 .

[98]  Helene Schulerud,et al.  On-Line Fat Content Classification of Inhomogeneous Pork Trimmings Using Multispectral near Infrared Interactance Imaging , 2010 .

[99]  B. Wood,et al.  Effects of pre‐processing of Raman spectra on in vivo classification of nutrient status of microalgal cells , 2006 .

[100]  Noel D.G. White,et al.  Fungal Damage Detection in Wheat Using Short-Wave Near-Infrared Hyperspectral and Digital Colour Imaging , 2012 .

[101]  Da-Wen Sun,et al.  Development of an alternative technique for rapid and accurate determination of fish caloric density based on hyperspectral imaging , 2016 .

[102]  E. Fernández-Ahumada,et al.  Feasibility of diode-array instruments to carry near-infrared spectroscopy from laboratory to feed process control. , 2008, Journal of agricultural and food chemistry.

[103]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[104]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[105]  A. Jiménez Marquez,et al.  Using optical NIR sensor for on-line virgin olive oils characterization , 2005 .

[106]  J. McMurtrey,et al.  Laser-induced fluorescence of green plants. 1: A technique for the remote detection of plant stress and species differentiation. , 1984, Applied optics.

[107]  Don Clark,et al.  Chemical images: Technical approaches and issues , 2006, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[108]  Yidan Bao,et al.  Rapid prediction of moisture content of dehydrated prawns using online hyperspectral imaging system. , 2012, Analytica chimica acta.

[109]  Harald Martens,et al.  Multivariate Linearity Transformations for Near-Infrared Reflectance Spectrometry - , 2017 .

[110]  E. Tollner,et al.  Shortwave infrared hyperspectral imaging for detecting sour skin (Burkholderiacepacia)-infected onions , 2012 .

[111]  Petra Tatzer,et al.  Industrial application for inline material sorting using hyperspectral imaging in the NIR range , 2005, Real Time Imaging.

[112]  Vincent Baeten,et al.  Screening of compound feeds using NIR hyperspectral data , 2006 .

[113]  P. K Varshney,et al.  Advanced image processing techniques for remotely sensed hyperspectral data : with 128 figures and 30 tables , 2004 .

[114]  Moon S. Kim,et al.  Safety Inspection of Cantaloupes and Strawberries Using Multispectral Fluorescence Imaging Techniques , 2004 .

[115]  Bart Nicolai,et al.  Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging , 2006 .

[116]  Yoshihiko Hamamoto,et al.  New method for detection of gastric cancer by hyperspectral imaging: a pilot study , 2013, Journal of biomedical optics.

[117]  Moon S. Kim,et al.  Fusarium damage assessment in wheat kernels by Vis/NIR hyperspectral imaging , 2011 .

[118]  D. White,et al.  Classification of bulk cereals using visible and NIR reflectance characteristics , 2005 .

[119]  Roland Bacon,et al.  Restoration of hyperspectral astronomical data from integral field spectrograph , 2011, 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[120]  D. Jayas,et al.  Characterization of the Influence of Moisture Content on Single Wheat Kernels Using Machine Vision , 2009 .

[121]  Vincent Mazet,et al.  Background removal from spectra by designing and minimising a non-quadratic cost function , 2005 .

[122]  S. Oshita,et al.  Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging. , 2011, Talanta.

[123]  Jean-Claude Wolff,et al.  Investigation into classification/sourcing of suspect counterfeit Heptodintrade mark tablets by near infrared chemical imaging. , 2009, Analytica chimica acta.

[124]  Kurt C. Lawrence,et al.  Performance of hyperspectral imaging system for poultry surface fecal contaminant detection. , 2006 .

[125]  Bart De Ketelaere,et al.  Assessment of the quality parameters in grapes using VIS/NIR spectroscopy , 2010 .

[126]  Marie-Françoise Devaux,et al.  Multispectral Fluorescence Imaging for the Identification of Food Products , 1996 .

[127]  Renfu Lu,et al.  Analysis of hyperspectral scattering images using locally linear embedding algorithm for apple mealiness classification , 2012 .

[128]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[129]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[130]  G. Hornberger,et al.  Estimation of chlorophyll a and pheophytin a in methanol1 , 1977 .

[131]  David J. Hand,et al.  Construction and Assessment of Classification Rules , 1997 .

[132]  W. Schapaugh,et al.  Classification of Fungal-Damaged Soybean Seeds Using Near-Infrared Spectroscopy , 2004 .

[133]  Prabal K. Ghosh,et al.  A magnetic resonance imaging study of wheat drying kinetics , 2007 .

[134]  P. Baranowski,et al.  Detection of early bruises in apples using hyperspectral data and thermal imaging , 2012 .

[135]  Moon S. Kim,et al.  Detection of cuticle defects on cherry tomatoes using hyperspectral fluorescence imagery , 2013 .

[136]  G. Tøgersen,et al.  On-line prediction of chemical composition of semi-frozen ground beef by non-invasive NIR spectroscopy. , 2003, Meat science.

[137]  José Blasco,et al.  On-line Fusion of Colour Camera and Spectrophotometer for Sugar Content Prediction of Apples , 1999 .

[138]  Noel D.G. White,et al.  Classification of Fungal Infected Wheat Kernels Using Near-Infrared Reflectance Hyperspectral Imaging and Support Vector Machine , 2007 .

[139]  Laila Stordrange,et al.  Feasibility study of NIR for surveillance of a pharmaceutical process, including a study of different preprocessing techniques , 2002 .

[140]  H. Ramon,et al.  Near infrared reflectance spectroscopy as a tool for the in-line determination of the moisture concentration in extruded semolina pasta , 2007 .

[141]  Hongjun Wang,et al.  Tongue Tumor Detection in Medical Hyperspectral Images , 2011, Sensors.

[142]  José M. F. Moura,et al.  Efficient detection in hyperspectral imagery , 2001, IEEE Trans. Image Process..

[143]  Jitendra Paliwal,et al.  Spectral Data Compression and Analyses Techniques to Discriminate Wheat Classes , 2006 .

[144]  Hartmut K. Lichtenthaler,et al.  Investigations of the Blue-green Fluorescence Emission of Plant Leaves , 1992 .

[145]  Paul Geladi,et al.  Characterisation of non-viable whole barley, wheat and sorghum grains using near-infrared hyperspectral data and chemometrics , 2011, Analytical and bioanalytical chemistry.

[146]  Robert A. Neville,et al.  Spectral unmixing of hyperspectral imagery for mineral exploration: comparison of results from SFSI and AVIRIS , 2003 .

[147]  Jian-min Zhou,et al.  Application of mid-infrared photoacoustic spectroscopy in monitoring carbonate content in soils , 2013 .

[148]  Dolores Pérez-Marín,et al.  Postharvest shelf-life discrimination of nectarines produced under different irrigation strategies using NIR-spectroscopy , 2011 .

[149]  Pol Coppin,et al.  Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: Non-parametric statistical approaches and physiological implications , 2007 .

[150]  Di Wu,et al.  Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review — Part II: Applications , 2013 .

[151]  Shiv O. Prasher,et al.  Categorization of pork quality using Gabor filter-based hyperspectral imaging technology , 2010 .

[152]  M. Forina,et al.  Multivariate calibration. , 2007, Journal of chromatography. A.

[153]  Peter Lasch,et al.  Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging , 2012 .

[154]  Britton Chance,et al.  Contrast-enhanced near-infrared (NIR) optical imaging for subsurface cancer detection , 2004 .

[155]  K. Walsh,et al.  Robustness of calibration models based on near infrared spectroscopy for the in-line grading of stonefruit for total soluble solids content , 2006 .

[156]  Emanuela Gobbi,et al.  Prediction of milled maize fumonisin contamination by multispectral image analysis. , 2010 .

[157]  Jun-Hu Cheng,et al.  Recent Advances for Rapid Identification of Chemical Information of Muscle Foods by Hyperspectral Imaging Analysis , 2016, Food Engineering Reviews.

[158]  Renfu Lu,et al.  Prediction of firmness and soluble solids content of blueberries using hyperspectral reflectance imaging , 2013 .

[159]  K. Heia,et al.  Detection of nematodes in cod (Gadus morhua) fillets by imaging spectroscopy. , 2007, Journal of food science.

[160]  Seong-Gon Kong,et al.  Inspection of poultry skin tumor using hyperspectral fluorescence imaging , 2003, International Conference on Quality Control by Artificial Vision.

[161]  Renfu Lu,et al.  Hyperspectral Reflectance and Fluorescence for Assessing Apple Quality , 2005 .

[162]  S. D. Jong,et al.  Handbook of Chemometrics and Qualimetrics , 1998 .

[163]  Daniel E. Guyer,et al.  Near-infrared hyperspectral reflectance imaging for detection of bruises on pickling cucumbers , 2006, Computers and Electronics in Agriculture.

[164]  G. Marosi,et al.  Comparison of chemometric methods in the analysis of pharmaceuticals with hyperspectral Raman imaging , 2011 .

[165]  Jure Zupan,et al.  Introduction to Artificial Neural Network (ANN) Methods: What They Are and How to Use Them*. , 1994 .

[166]  Karsten Heia,et al.  Automatic nematode detection in cod fillets (Gadus morhua) by transillumination hyperspectral imaging. , 2011, Journal of food science.

[167]  R. Todeschini,et al.  Multivariate Classification for Qualitative Analysis , 2009 .

[168]  J P Wold,et al.  On-line determination and control of fat content in batches of beef trimmings by NIR imaging spectroscopy. , 2011, Meat science.

[169]  P. Williams,et al.  Optimization of mathematical treatments of raw near-infrared signal in the measurement of protein in hard red spring wheat. I. Influence of particle size. , 1984 .

[170]  N. M. Anderson,et al.  MEASURING FAT CONTENT OF GROUND BEEF STREAM USING ON–LINE VISIBLE/NIR SPECTROSCOPY , 2003 .

[171]  J. Roger,et al.  Non-destructive tests on the prediction of apple fruit flesh firmness and soluble solids content on tree and in shelf life , 2006 .

[172]  Paul J. Williams,et al.  Near infrared hyperspectral imaging for the evaluation of endosperm texture in whole yellow maize (Zea maize L.) kernels. , 2009, Journal of agricultural and food chemistry.

[173]  Mingjie Tang,et al.  Detection of Hidden Bruise on Kiwi fruit Using Hyperspectral Imaging and Parallelepiped Classification , 2012 .

[174]  DeLiang Wang,et al.  Unvoiced Speech Segregation From Nonspeech Interference via CASA and Spectral Subtraction , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[175]  Jasper G. Tallada,et al.  NIR Hyperspectral Imaging for Measurement of Internal Quality in Strawberries , 2005 .

[176]  Gamal ElMasry,et al.  Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging. , 2013, Food chemistry.

[177]  Digvir S. Jayas,et al.  Fungal Detection in Wheat Using Near-Infrared Hyperspectral Imaging , 2007 .

[178]  Noel D.G. White,et al.  Identification of insect-damaged wheat kernels using short-wave near-infrared hyperspectral and digital colour imaging , 2010 .

[179]  Alexander F. H. Goetz,et al.  Three decades of hyperspectral remote sensing of the Earth: a personal view. , 2009 .

[180]  Floyd E. Dowell,et al.  Differentiating Vitreous and Nonvitreous Durum Wheat Kernels by Using Near-Infrared Spectroscopy , 2000 .

[181]  Colm P. O'Donnell,et al.  Identification of mushrooms subjected to freeze damage using hyperspectral imaging. , 2009 .

[182]  Douglas Fernandes Barbin,et al.  Grape seed characterization by NIR hyperspectral imaging , 2013 .

[183]  M. Barker,et al.  Partial least squares for discrimination , 2003 .

[184]  José Manuel Amigo,et al.  Direct quantification and distribution assessment of major and minor components in pharmaceutical tablets by NIR-chemical imaging. , 2009, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[185]  Geoffrey J. McLachlan,et al.  Discriminant Analysis and Statistical Pattern Recognition: McLachlan/Discriminant Analysis & Pattern Recog , 2005 .

[186]  E. Shwedyk,et al.  An instrumental system for cereal grain classification using digital image analysis , 1987 .

[187]  Jianwei Qin,et al.  DETECTION OF PITS IN TART CHERRIES BY HYPERSPECTRAL TRANSMISSION IMAGING , 2005 .

[188]  H. Noh,et al.  Integration of Hyperspectral Reflectance and Fluorescence Imaging for Assessing Apple Maturity , 2007 .

[189]  Pierantonio Facco,et al.  Data Fusion for Food Authentication: Fresh/Frozen–Thawed Discrimination in West African Goatfish (Pseudupeneus prayensis) Fillets , 2013, Food and Bioprocess Technology.

[190]  Da-Wen Sun,et al.  Principles and Applications of Hyperspectral Imaging in Quality Evaluation of Agro-Food Products: A Review , 2012, Critical reviews in food science and nutrition.

[191]  Gilles Rabatel,et al.  Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in Wheat , 2011 .

[192]  P. Schaare,et al.  Comparison of reflectance, interactance and transmission modes of visible-near infrared spectroscopy for measuring internal properties of kiwifruit (Actinidia chinensis) , 2000 .

[193]  Jitendra Paliwal,et al.  Near-infrared spectroscopy and imaging in food quality and safety , 2007 .

[194]  Moon S. Kim,et al.  DETECTION OF SKIN TUMORS ON CHICKEN CARCASSES USING HYPERSPECTRAL FLUORESCENCE IMAGING , 2004 .

[195]  Giorgia Foca,et al.  Classification of pig fat samples from different subcutaneous layers by means of fast and non-destructive analytical techniques , 2013 .

[196]  Cecilia Riccioli,et al.  Efficient integration of particle analysis in hyperspectral imaging for rapid assessment of oxidative degradation in salmon fillet , 2016 .

[197]  P. Geladi,et al.  Linearization and Scatter-Correction for Near-Infrared Reflectance Spectra of Meat , 1985 .

[198]  S. Wold,et al.  Orthogonal signal correction of near-infrared spectra , 1998 .

[199]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[200]  Stephen J. Symons,et al.  Determination of wheat kernel morphological variation by digital image analysis: I. Variation in Eastern Canadian milling quality wheats , 1988 .

[201]  Renfu Lu,et al.  Hyperspectral laser-induced fluorescence imaging for assessing apple fruit quality , 2007 .

[202]  Won Suk Lee,et al.  Citrus greening disease detection using aerial hyperspectral and multispectral imaging techniques , 2012 .

[203]  Josse De Baerdemaeker,et al.  Detecting Bruises on ‘Golden Delicious’ Apples using Hyperspectral Imaging with Multiple Wavebands , 2005 .

[204]  Henning Buddenbaum,et al.  The Effects of Spectral Pretreatments on Chemometric Analyses of Soil Profiles Using Laboratory Imaging Spectroscopy , 2012 .

[205]  Alex Fong Advanced photonic tools for hyperspectral imaging in the life sciences , 2008 .

[206]  Kristian Kersting,et al.  Hyperspectral phenotyping on the microscopic scale: towards automated characterization of plant-pathogen interactions , 2015, Plant Methods.

[207]  Rasmus Bro,et al.  Data Pre-processing , 2009 .

[208]  Josse De Baerdemaeker,et al.  Combination of chemometric tools and image processing for bruise detection on apples , 2007 .

[209]  Moon S. Kim,et al.  Analysis of hyperspectral fluorescence images for poultry skin tumor inspection. , 2004, Applied optics.

[210]  Gamal ElMasry,et al.  Principles of Hyperspectral Imaging Technology , 2010 .

[211]  S. Prasher,et al.  Pork quality and marbling level assessment using a hyperspectral imaging system , 2007 .

[212]  Sotiris B. Kotsiantis,et al.  Supervised Machine Learning: A Review of Classification Techniques , 2007, Informatica.

[213]  Desire L. Massart,et al.  Detection of inhomogeneities in sets of NIR spectra , 1996 .

[214]  T. Koutchma UV Light for Processing Foods , 2008 .

[215]  Matthias Otto,et al.  Chemometrics: Statistics and Computer Application in Analytical Chemistry , 1999 .

[216]  T. Isaksson,et al.  On-line NIR analysis of fat, water and protein in industrial scale ground meat batches. , 1999, Meat Science.

[217]  Ning Wang,et al.  DETERMINING VITREOUSNESS OF DURUM WHEAT USING TRANSMITTED AND REFLECTED IMAGES , 2005 .

[218]  Matthew R. Jones,et al.  NEAR INFRARED SPECTROSCOPY AND IMAGING , 1997 .

[219]  Yong He,et al.  Detection of early blight and late blight diseases on tomato leaves using hyperspectral imaging , 2015, Scientific Reports.

[220]  Desire L. Massart,et al.  Comparison of regularized discriminant analysis linear discriminant analysis and quadratic discriminant analysis applied to NIR data , 1996 .

[221]  Moon S. Kim,et al.  Microbial biofilm detection on food contact surfaces by macro-scale fluorescence imaging , 2010 .

[222]  R. Vadivambal,et al.  Wheat disinfestation using microwave energy , 2005 .

[223]  Chieu D. Tran,et al.  Principles, Instrumentation, and Applications of Infrared Multispectral Imaging, An Overview , 2005 .

[224]  Gamal ElMasry,et al.  Quality classification of cooked, sliced turkey hams using NIR hyperspectral imaging system , 2011 .

[225]  Lu Wang,et al.  Estimation of chlorophyll-a concentration of different seasons in outdoor ponds using hyperspectral imaging. , 2016, Talanta.

[226]  John W. Tukey,et al.  We Need Both Exploratory and Confirmatory , 1980 .

[227]  Gerrit Polder,et al.  Tomato sorting using independent component analysis on spectral images , 2003, Real Time Imaging.

[228]  E. Martin,et al.  Extracting chemical information from spectral data with multiplicative light scattering effects by optical path-length estimation and correction. , 2006, Analytical chemistry.

[229]  Noel D.G. White,et al.  SOFT X–RAY INSPECTION OF WHEAT KERNELS INFESTED BY SITOPHILUS ORYZAE , 2003 .

[230]  Hongbin Pu,et al.  Spectral absorption index in hyperspectral image analysis for predicting moisture contents in pork longissimus dorsi muscles. , 2016, Food chemistry.

[231]  Paul E. Anderson,et al.  Orthogonal Projections to Latent Structures , 2015 .

[232]  H. Martens,et al.  Light scattering and light absorbance separated by extended multiplicative signal correction. application to near-infrared transmission analysis of powder mixtures. , 2003, Analytical chemistry.

[233]  Noel D.G. White,et al.  Characterization of the Influence of Moisture Content on the Morphological Features of Single Wheat Kernels Using Machine Vision , 2011 .

[234]  Stephen J. Symons,et al.  Comparison of short-wavelength infrared (SWIR) hyperspectral imaging system with an FT-NIR spectrophotometer for predicting alpha-amylase activities in individual Canadian Western Red Spring (CWRS) wheat kernels , 2011 .

[235]  Yud-Ren Chen,et al.  Systematic approach for using hyperspectral imaging data to develop multispectral imagining systems: Detection of feces on apples , 2006 .

[236]  Itzhak Shmulevich,et al.  NIRS Detection of Moldy Core in Apples , 2010 .

[237]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[238]  Johan Trygg,et al.  Chemometrics in metabonomics. , 2007, Journal of proteome research.

[239]  Moon S. Kim,et al.  Identification of the pigment responsible for the blue fluorescence band in the laser induced fluorescence (LIF) spectra of green plants, and the potential use of this band in remotely estimating rates of photosynthesis , 1991 .

[240]  Floyd E. Dowell,et al.  Detection of Parasitized Rice Weevils in Wheat Kernels with Near-Infrared Spectroscopy1☆ , 1999 .

[241]  J P Wold,et al.  Feasibility of NIR interactance hyperspectral imaging for on-line measurement of crude composition in vacuum packed dry-cured ham slices. , 2013, Meat science.

[242]  Mário A. T. Figueiredo,et al.  Near-infrared hyperspectral unmixing based on a minimum volume criterion for fast and accurate chemometric characterization of counterfeit tablets. , 2010, Analytical chemistry.

[243]  Yuan-Yuan Pu,et al.  Prediction of moisture content uniformity of microwave-vacuum dried mangoes as affected by different shapes using NIR hyperspectral imaging , 2016 .

[244]  Gerrit Polder,et al.  Detection of Fusarium in single wheat kernels using spectral Imaging , 2005 .

[245]  Taemin Kim,et al.  Emission filter design to detect poultry skin tumors using fluorescence hyperspectral imaging , 2010 .

[246]  Da-Wen Sun,et al.  Improving quality inspection of food products by computer vision: a review , 2004 .

[247]  R. Vadivambal,et al.  Bio-Imaging: Principles, Techniques, and Applications , 2015 .

[248]  Andrew Jirasek,et al.  Investigation of Selected Baseline Removal Techniques as Candidates for Automated Implementation , 2005, Applied spectroscopy.

[249]  Junhong Liu,et al.  Single-Kernel Maize Analysis by Near-Infrared Hyperspectral Imaging , 2004 .

[250]  Gamal Elmasry,et al.  Near-infrared hyperspectral imaging for grading and classification of pork. , 2012, Meat science.

[251]  Jun-Hu Cheng,et al.  Pork biogenic amine index (BAI) determination based on chemometric analysis of hyperspectral imaging data , 2016 .

[252]  Seong G. Kong,et al.  Principal component analysis for poultry tumor inspection using hyperspectral fluorescence imaging , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[253]  S. Wold,et al.  The multivariate calibration problem in chemistry solved by the PLS method , 1983 .

[254]  Kurt C. Lawrence,et al.  Hyperspectral Imaging for Detecting Fecal and Ingesta Contamination on Poultry Carcasses , 2001 .

[255]  F. Dowell,et al.  DETECTING AFLATOXIN IN SINGLE CORN KERNELS BY TRANSMITTANCE AND REFLECTANCE SPECTROSCOPY , 2001 .

[256]  Wesley E. Snyder,et al.  Band selection using independent component analysis for hyperspectral image processing , 2003, 32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings..

[257]  K. Zetsche,et al.  Evidence for a G‐Protein Regulated Adenylate Cyclase and a Ca2/Calmodulin Controlled Phosphodiesterase in the Phytoflagellate Chlorogonium , 1992 .

[258]  J. J. Colls,et al.  Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks , 2004 .

[259]  Steven J. Thomson,et al.  Early Detection of Soybean Plant Injury from Glyphosate by Measuring Chlorophyll Reflectance and Fluorescence , 2012 .

[260]  Gamal ElMasry,et al.  Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression , 2012 .

[261]  Pol Coppin,et al.  DETECTION OF BIOTIC STRESS (VENTURIA INAEQUALIS) IN APPLE TREES USING HYPERSPECTRAL ANALYSIS , 2005 .

[262]  Yud-Ren Chen,et al.  Machine vision technology for agricultural applications , 2002 .

[263]  Da-Wen Sun,et al.  Potential of hyperspectral imaging for visual authentication of sliced organic potatoes from potato and sweet potato tubers and rapid grading of the tubers according to moisture proportion , 2016, Comput. Electron. Agric..

[264]  Johanna Smeyers-Verbeke,et al.  Handbook of Chemometrics and Qualimetrics: Part A , 1997 .

[265]  Noel D.G. White,et al.  Identification of wheat classes at different moisture levels using near-infrared hyperspectral images of bulk samples , 2011 .

[266]  Jianwei Qin,et al.  Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method , 2008 .

[267]  D. P. Ariana,et al.  Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging. , 2010 .

[268]  Noel D.G. White,et al.  Feasibility of near-infrared hyperspectral imaging to differentiate Canadian wheat classes , 2008 .

[269]  Ryan Gosselin,et al.  Potential of Hyperspectral Imaging for Quality Control of Polymer Blend Films , 2009 .

[270]  Manel Alcalà Bernàrdez,et al.  Multivariate Calibration for Quantitative Analysis , 2009 .

[271]  Changhong Liu,et al.  Application of Multispectral Imaging to Determine Quality Attributes and Ripeness Stage in Strawberry Fruit , 2014, PloS one.

[272]  Da-Wen Sun,et al.  Recent developments in the applications of image processing techniques for food quality evaluation , 2004 .

[273]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[274]  Guoyi Chi,et al.  Multivariate Calibration of Near Infrared Spectroscopy in the Presence of Light Scattering Effect: A Comparative Study , 2011 .

[275]  Silvia Serranti,et al.  Classification of oat and groat kernels using NIR hyperspectral imaging. , 2013, Talanta.

[276]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[277]  P Dardenne,et al.  Classification of modified starches by fourier transform infrared spectroscopy using support vector machines. , 2005, Journal of agricultural and food chemistry.