Finite element modeling following partial meniscectomy: Effect of various size of resection

Meniscal tears are a common occurrence in the human knee joint. Orthopaedic surgeons routinely perform surgery to remove a portion of the torn meniscus. This surgery is referred to as a partial meniscectomy. It has been shown that individuals who have decreased amount of meniscus are likely to develop knee osteoarthritis. This research presents the analysis of the stresses in the knee joint upon various amounts of partial meniscectomy. To analyse the stresses in the knee joint using finite element method an axisymmetric model was developed. Articular cartilage was considered as three layers, which were modelled as a poroelastic transversely isotropic superficial layer, a poroelastic isotropic middle and deep layers and an elastic isotropic calcified cartilage layer. Eight cases were modelled including a knee joint with an intact meniscus, 10%, 20%, 30%, 40%, 50%, 60% and 65% medial meniscotomy. Under the axial load of human weight on the femoral articular cartilage with 40% removal of meniscus high contact stresses took place on cartilage surface. Further, with 30%, 40%, 50% of meniscectomy significant amount of contact area noticed between femoral and tibial articular cartilage. After 65% of meniscectomy the maximal shear stress in the cartilage increased up to 225% compared to knee with intact meniscus. It appears that meniscectomies greater than 20% drastically increases the stresses in the knee joint

[1]  R. Haut,et al.  An approach for the stress analysis of transversely isotropic biphasic cartilage under impact load. , 1998, Journal of biomechanical engineering.

[2]  T. Fukubayashi,et al.  Load-bearing mode of the knee joint: physical behavior of the knee joint with or without menisci. , 1980, Clinical orthopaedics and related research.

[3]  V C Mow,et al.  Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus , 1986, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[4]  F. Guilak,et al.  Simultaneous changes in the mechanical properties, quantitative collagen organization, and proteoglycan concentration of articular cartilage following canine meniscectomy , 2000, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[5]  B Calvo,et al.  Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. , 2005, Clinical biomechanics.

[6]  F Eckstein,et al.  Interindividual variability and correlation among morphological parameters of knee joint cartilage plates: analysis with three-dimensional MR imaging. , 2001, Osteoarthritis and cartilage.

[7]  Van C. Mow,et al.  The Biomechanical Function of the Collagen Fibril Ultrastructure of Articular Cartilage , 1978 .

[8]  V C Mow,et al.  A transversely isotropic biphasic finite element model of the meniscus. , 1992, Journal of biomechanics.

[9]  R Huiskes,et al.  Pathways of load-induced cartilage damage causing cartilage degeneration in the knee after meniscectomy. , 2003, Journal of biomechanics.

[10]  Barbara Zielinska,et al.  3D finite element model of meniscectomy: changes in joint contact behavior. , 2006, Journal of biomechanical engineering.

[11]  Arthur D. Salo,et al.  Finite Element Modeling of Knee Joint Contact Pressures and Comparison to Magnetic Resonance Imaging of the Loaded Knee , 2003 .

[12]  A Huson,et al.  A Numerical Model of the Load Transmission in the Tibio-Femoral Contact Area , 1990, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[13]  Van C. Mow,et al.  Structure and function of articular cartilage and meniscus , 2005 .

[14]  T. Oegema,et al.  The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis , 1997, Microscopy research and technique.

[15]  Freddie H. Fu,et al.  Meniscal tears: The effect of meniscectomy and of repair on intraarticular contact areas and stress in the human knee , 1986, The American journal of sports medicine.

[16]  J. Lewis,et al.  Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone , 1994, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.