The translational landscape of ground state pluripotency

[1]  H. Stunnenberg,et al.  Epigenetic modulation of a hardwired 3D chromatin landscape in two naive states of pluripotency , 2019, Nature Cell Biology.

[2]  N. Sonenberg,et al.  Translational Control in Stem Cells , 2019, Front. Genet..

[3]  R. Lehmann,et al.  Translational Control during Developmental Transitions. , 2018, Cold Spring Harbor perspectives in biology.

[4]  J. Pritchard,et al.  Post-translational buffering leads to convergent protein expression levels between primates , 2018, Genome Biology.

[5]  R. Blelloch,et al.  Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells , 2018, bioRxiv.

[6]  Gene-Wei Li,et al.  Evolutionary Convergence of Pathway-Specific Enzyme Expression Stoichiometry , 2018, Cell.

[7]  Michael T. McManus,et al.  The Transcriptionally Permissive Chromatin State of Embryonic Stem Cells Is Acutely Tuned to Translational Output. , 2018, Cell stem cell.

[8]  James Chappell,et al.  Distinct Cell-Cycle Control in Two Different States of Mouse Pluripotency , 2017, Cell stem cell.

[9]  Hendrik G. Stunnenberg,et al.  The interplay of epigenetic marks during stem cell differentiation and development , 2017, Nature Reviews Genetics.

[10]  Da-Zhi Wang,et al.  Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts , 2017, The Journal of Biological Chemistry.

[11]  M. Biggin,et al.  Quantitating translational control: mRNA abundance-dependent and independent contributions and the mRNA sequences that specify them , 2017, bioRxiv.

[12]  G. M. Wilson,et al.  AUF1 regulation of coding and noncoding RNA , 2017, Wiley interdisciplinary reviews. RNA.

[13]  D. Presgraves,et al.  Translational compensation of gene copy number alterations by aneuploidy in Drosophila melanogaster , 2017, Nucleic acids research.

[14]  Luisa Cutillo,et al.  The impact of microRNAs on transcriptional heterogeneity and gene co-expression across single embryonic stem cells , 2017, Nature Communications.

[15]  S. Yamanaka,et al.  Nat1 promotes translation of specific proteins that induce differentiation of mouse embryonic stem cells , 2016, Proceedings of the National Academy of Sciences.

[16]  Christos G. Gkogkas,et al.  Control of embryonic stem cell self-renewal and differentiation via coordinated alternative splicing and translation of YY2 , 2016, Proceedings of the National Academy of Sciences.

[17]  Dana Pascovici,et al.  Multiple testing corrections in quantitative proteomics: A useful but blunt tool , 2016, Proteomics.

[18]  Michaela Frye,et al.  Stem cell function and stress response are controlled by protein synthesis , 2016, Nature.

[19]  R. Aebersold,et al.  On the Dependency of Cellular Protein Levels on mRNA Abundance , 2016, Cell.

[20]  Xuerui Yang,et al.  Genome-wide assessment of differential translations with ribosome profiling data , 2016, Nature Communications.

[21]  Peer Bork,et al.  Spatiotemporal variation of mammalian protein complex stoichiometries , 2016, Genome Biology.

[22]  J. Hanna,et al.  Dynamic stem cell states: naive to primed pluripotency in rodents and humans , 2016, Nature Reviews Molecular Cell Biology.

[23]  A. Syme,et al.  Phosphorylation of eIF2α Is a Translational Control Mechanism Regulating Muscle Stem Cell Quiescence and Self-Renewal. , 2016, Cell stem cell.

[24]  M. Mann,et al.  Proteomic maps of breast cancer subtypes , 2016, Nature Communications.

[25]  Lusy Handoko,et al.  Dynamic Reorganization of Extremely Long-Range Promoter-Promoter Interactions between Two States of Pluripotency. , 2015, Cell stem cell.

[26]  J. Nichols,et al.  Lineage-Specific Profiling Delineates the Emergence and Progression of Naive Pluripotency in Mammalian Embryogenesis , 2015, Developmental cell.

[27]  Michael P Snyder,et al.  Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans , 2015, Genome research.

[28]  Mark D. Biggin,et al.  Statistics requantitates the central dogma , 2015, Science.

[29]  Maxwell R. Mumbach,et al.  Dynamic profiling of the protein life cycle in response to pathogens , 2015, Science.

[30]  Alexis Battle,et al.  Impact of regulatory variation from RNA to protein , 2015, Science.

[31]  M. Surani,et al.  Regulatory principles of pluripotency: from the ground state up. , 2014, Cell stem cell.

[32]  J. Nichols,et al.  Resetting Transcription Factor Control Circuitry toward Ground-State Pluripotency in Human , 2014, Cell.

[33]  Paul Theodor Pyl,et al.  HTSeq – A Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[34]  Jeffrey R. Whiteaker,et al.  Proteogenomic characterization of human colon and rectal cancer , 2014, Nature.

[35]  Marco Y. Hein,et al.  Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ * , 2014, Molecular & Cellular Proteomics.

[36]  Jeffrey A. Magee,et al.  Haematopoietic stem cells require a highly regulated protein synthesis rate , 2014, Nature.

[37]  Yang Wang,et al.  N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells , 2014, Nature Cell Biology.

[38]  Katrin Eichelbaum,et al.  Rapid Temporal Dynamics of Transcription, Protein Synthesis, and Secretion during Macrophage Activation* , 2014, Molecular & Cellular Proteomics.

[39]  Gemma E. May,et al.  Ribosome profiling reveals post-transcriptional buffering of divergent gene expression in yeast , 2013, Genome research.

[40]  Jonathan K. Pritchard,et al.  Primate Transcript and Protein Expression Levels Evolve Under Compensatory Selection Pressures , 2013, Science.

[41]  L. Foster,et al.  Protein synthesis rate is the predominant regulator of protein expression during differentiation , 2013, Molecular systems biology.

[42]  Brendan J. Frey,et al.  A compendium of RNA-binding motifs for decoding gene regulation , 2013, Nature.

[43]  J. Keene,et al.  Mechanisms coordinating ELAV/Hu mRNA regulons. , 2013, Current opinion in genetics & development.

[44]  P. Bickel,et al.  System wide analyses have underestimated protein abundances and the importance of transcription in mammals , 2012, PeerJ.

[45]  Anna M. McGeachy,et al.  The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments , 2012, Nature Protocols.

[46]  Enrico Blanzieri,et al.  Widespread uncoupling between transcriptome and translatome variations after a stimulus in mammalian cells , 2012, BMC Genomics.

[47]  Jennifer Nichols,et al.  The Transcriptional and Epigenomic Foundations of Ground State Pluripotency , 2012, Cell.

[48]  E. Marcotte,et al.  Insights into the regulation of protein abundance from proteomic and transcriptomic analyses , 2012, Nature Reviews Genetics.

[49]  Nicholas T. Ingolia,et al.  Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes , 2011, Cell.

[50]  Xiaozhong Wang,et al.  Mammalian hyperplastic discs homolog EDD regulates miRNA-mediated gene silencing. , 2011, Molecular cell.

[51]  K. Jensen,et al.  HuB (elavl2) mRNA Is Restricted to the Germ Cells by Post-Transcriptional Mechanisms including Stabilisation of the Message by DAZL , 2011, PloS one.

[52]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[53]  Simon J. van Heeringen,et al.  GimmeMotifs: a de novo motif prediction pipeline for ChIP-sequencing experiments , 2010, Bioinform..

[54]  N. Sonenberg,et al.  The poly(A)-binding protein partner Paip2a controls translation during late spermiogenesis in mice. , 2010, The Journal of clinical investigation.

[55]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[56]  Luis Serrano,et al.  Correlation of mRNA and protein in complex biological samples , 2009, FEBS letters.

[57]  F. Markowetz,et al.  Systems-level dynamic analyses of fate change in murine embryonic stem cells , 2009, Nature.

[58]  M. Mann,et al.  Universal sample preparation method for proteome analysis , 2009, Nature Methods.

[59]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[60]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[61]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[62]  Alexei A. Sharov,et al.  Database for mRNA Half-Life of 19 977 Genes Obtained by DNA Microarray Analysis of Pluripotent and Differentiating Mouse Embryonic Stem Cells , 2008, DNA research : an international journal for rapid publication of reports on genes and genomes.

[63]  H. Lou,et al.  Diverse molecular functions of Hu proteins , 2008, Cellular and Molecular Life Sciences.

[64]  B. Doble,et al.  The ground state of embryonic stem cell self-renewal , 2008, Nature.

[65]  Lil Pabon,et al.  A hierarchical network controls protein translation during murine embryonic stem cell self-renewal and differentiation. , 2008, Cell stem cell.

[66]  M. Gorospe,et al.  Translational Control of Cytochrome c by RNA-Binding Proteins TIA-1 and HuR , 2006, Molecular and Cellular Biology.

[67]  M. Gorospe,et al.  Translational Repression by RNA-Binding Protein TIAR , 2006, Molecular and Cellular Biology.

[68]  N. Gray,et al.  The DAZL family proteins are PABP‐binding proteins that regulate translation in germ cells , 2005, The EMBO journal.

[69]  Thomas D. Wu,et al.  GMAP: a genomic mapping and alignment program for mRNA and EST sequence , 2005, Bioinform..

[70]  M. Mann,et al.  AU Binding Proteins Recruit the Exosome to Degrade ARE-Containing mRNAs , 2001, Cell.

[71]  J. A. Steitz,et al.  HuR and mRNA stability , 2001, Cellular and Molecular Life Sciences CMLS.

[72]  S. Gygi,et al.  Correlation between Protein and mRNA Abundance in Yeast , 1999, Molecular and Cellular Biology.

[73]  H. Furneaux,et al.  The Elav-like proteins bind to AU-rich elements and to the poly(A) tail of mRNA. , 1997, Nucleic acids research.

[74]  N. Sonenberg,et al.  Toward a genome-wide landscape of translational control. , 2013, Cold Spring Harbor perspectives in biology.

[75]  M. Mann,et al.  Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips , 2007, Nature Protocols.